t=t ‘ 1 − v c ‘ k ‘ ⇒ k \dfrac{t^`}{1-\dfrac{v}{c^`\scriptscriptstyle k^`\Rightarrow k}} 1 − c ‘ k ‘ ⇒ k v t ‘ = t ‘ 1 − v c \dfrac{t^`}{1-\dfrac{v}{c}} 1 − c v t ‘
whereas, the same perceived time interval in k from the perspective of k.is given by,
t = t ‘ ( t ‘ 1 − v c ‘ k ‘ ⇒ k ) = t ‘ ( 1 + V C ) t=t^`(\dfrac{t^`}{1-\dfrac{v}{c^`\scriptscriptstyle k^`\Rightarrow k}})=t^`(1+{V \over C}) t = t ‘ ( 1 − c ‘ k ‘ ⇒ k v t ‘ ) = t ‘ ( 1 + C V )
t = t ‘ 1 − V C = t ‘ ( 1 + V C ) t={t^` \over 1-{V \over C}}=t^`(1+{V \over C}) t = 1 − C V t ‘ = t ‘ ( 1 + C V )
leading to v=0 unless t is transformed by a certain factor say γ \gamma γ with respect to k, and by other factor say β \beta β with respect to k'. This leads to;
t = β t ‘ 1 − V C = γ t ‘ ( 1 + V C ) t={\beta t^` \over 1-{V \over C}}=\gamma t^`(1+{V \over C}) t = 1 − C V β t ‘ = γ t ‘ ( 1 + C V )
which can be satisfied only if β = 1 / γ \beta =1 / \gamma β = 1/ γ
which results to;
γ = \gamma = γ = 1 1 − V 2 C 2 \cfrac{1}{\sqrt{1 - \cfrac{V^2}{C^2}}} 1 − C 2 V 2 1
∴ \therefore ∴ t = t ‘ γ ( 1 − v c ) t=\dfrac{t^`}{\gamma(1-\dfrac{v}{c})} t = γ ( 1 − c v ) t ‘ =γ t ‘ ( 1 + V C ) \gamma t^`(1+{V \over C}) γ t ‘ ( 1 + C V )
hence the prove that;
γ = \gamma = γ = 1 1 − V 2 C 2 \cfrac{1}{\sqrt{1 - \cfrac{V^2}{C^2}}} 1 − C 2 V 2 1
Comments