Let F be the modulus of the least force parallel to the plane, "\\alpha" be the angle of inclination.
Let the x-axis be directed along the plane upwards, y-axis be perpendicular to x-axis and also directed upwards. If F is the least force needed to begin the motion, the acceleration will be 0.
x-axis: "F -mg\\sin\\alpha -\\mu N = 0."
y-axis: "N - mg\\cos\\alpha = 0," therefore "N = mg\\cos\\alpha."
So "F - mg\\sin\\alpha -\\mu mg\\cos\\alpha = 0 \\Rightarrow \\mu = \\dfrac{F-mg\\sin\\alpha}{mg\\cos\\alpha} = \\dfrac{10\\,\\mathrm{N} - 10\\,\\mathrm{kg}\\cdot10\\,\\mathrm{N\/kg}\\cdot\\sin30^\\circ}{10\\,\\mathrm{kg}\\cdot10\\,\\mathrm{N\/kg}\\cdot\\cos30^\\circ} < 0 !!!"
So it is a mistake in the problem situation, because 10 N is less than the component of gravitational force.
If F = 100 N, then
"\\mu = \\dfrac{F-mg\\sin\\alpha}{mg\\cos\\alpha} = \\dfrac{100\\,\\mathrm{N} - 10\\,\\mathrm{kg}\\cdot10\\,\\mathrm{N\/kg}\\cdot\\sin30^\\circ}{10\\,\\mathrm{kg}\\cdot10\\,\\mathrm{N\/kg}\\cdot\\cos30^\\circ} = 0.58" , it's a realistic value.
Comments
Leave a comment