Question #131665
show that if a rod held at angle Theta to the horizontal and released ,its lower end will not slip if the friction coefficient between rod and ground is greater then 3sinthetacostheta/1+3sin^2theta.
1
Expert's answer
2020-09-06T17:22:40-0400

α=mg12cosθml23=3gcosθ2×3\alpha= \frac{mg\frac{1}{2}cos\theta}{ \frac{ml^2}{3}}= \frac {3 g\cos\theta}{2\times3}


aC=12α=34gcosθa_C= \frac {1}{2}\alpha= \frac {3}{4}g \cos\theta

Now μN=maCsinθorμN=34mgsinθcosθ..........(i)\mu N=ma_C \sin\theta or \mu N= \frac {3}{4} mg \sin\theta \cos\theta..........(i)


Further, mgN=maymg-N=ma_y or N=mgmaycosθN=mg- ma_y \cos \theta or N=mg34mgcos2θ..........(ii)N= mg- \frac {3}{4} mg \cos^2 \theta..........(ii)


Dividing equation (i) and (ii) we have


μ=34cosθsinθ134cos2θ\mu= \frac {\frac{3}{4}\cos\theta\sin\theta} {1-\frac{3}{4}\cos^2\theta} = 3sinθcosθ43cos2θ\frac {3\sin\theta \cos \theta}{4-3 \cos^2\theta}


= 3sinθcosθ1+3sin2θ\frac {3\sin\theta \cos\theta}{1+3\sin^2\theta} Hence Proved.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS