"\\alpha= \\frac{mg\\frac{1}{2}cos\\theta}{ \\frac{ml^2}{3}}= \\frac {3 g\\cos\\theta}{2\\times3}"
"a_C= \\frac {1}{2}\\alpha= \\frac {3}{4}g \\cos\\theta"
Now "\\mu N=ma_C \\sin\\theta or \\mu N= \\frac {3}{4} mg \\sin\\theta \\cos\\theta..........(i)"
Further, "mg-N=ma_y" or "N=mg- ma_y \\cos \\theta" or "N= mg- \\frac {3}{4} mg \\cos^2 \\theta..........(ii)"
Dividing equation (i) and (ii) we have
"\\mu= \\frac {\\frac{3}{4}\\cos\\theta\\sin\\theta} {1-\\frac{3}{4}\\cos^2\\theta}" = "\\frac {3\\sin\\theta \\cos \\theta}{4-3 \\cos^2\\theta}"
= "\\frac {3\\sin\\theta \\cos\\theta}{1+3\\sin^2\\theta}" Hence Proved.
Comments
Leave a comment