solution:-
given data
density of glycerin ("\\rho" ) =1252 kg/m^3
viscosity of glycerin("\\mu" )=0.3073 kg/m-s
diameter of pipe (D) =0.04 m
length of pipe (L)=70 m
maximum velocity(umax)=6 m/s
the velocity profile in fully developed laminar flow is
"u(r)=u_{max}(1-\\frac{r^2}{R^2})"
"=6(1-\\frac{r^2}{(0.02)^2})"
"\\fcolorbox{red}{yellow}{$u(r)=6(1-2500r^2)m\/s$}"
average velocity
"V_{a}=\\frac{u_{max}}{2}=\\frac{6}{2}=3m\/s"
flow rate
"Q=V_aA"
"Q=3\\times\\pi\\times\\frac{(0.04)^2}{4}"
"Q=3.77\\times10^{-3}m^3\/s"
renolds number can be given
"Re=\\frac{\\rho V_aD}{\\mu}"
"=\\frac{1252\\times3\\times0.04}{0.3073}"
"Re=488.9"
"Re<2300"
so its laminar flow.
therefore friction factor
"f=\\frac{64}{Re}=\\frac{64}{488.9}=0.1309"
and head loss
"H=f\\frac{LV_a^2}{D2g}"
"H=\\frac{0.1309\\times70\\times3^2}{0.04\\times2\\times9.8}"
"H=105.1m"
by using the Bernoulli equation pressure difference can be written as
"\\Delta P=P_1-P_2 =\\rho g(Z_2-Z_1+H)"
pipe is horizontal so Z1 and Z2 will be zero.
"\\Delta P=1252\\times9.8(0+105.1)"
"\\fcolorbox{green}{yellow}{$\\Delta P=1291\\times10^3 Pa$}"
pumping power can be given as
"pumping\\space power = Q \\times\\Delta P"
"=3.77\\times10^{-3}\\times1291\\times10^{3}"
"\\fcolorbox{green}{yellow}{$pumping \\space power=4.87\\times10^3 W$}"
Comments
Leave a comment