Answer to Question #127881 in Mechanics | Relativity for Tad Medina

Question #127881
A particle travels around a circle of radius 5 m, changing its speed at a constant rate. At a certain point A, the speed is 3m/s. After travelling another quarter revolution to point B, the speed has increased to 6 m/s. Determine the magnitude of the acceleration of the particle at B. *
1
Expert's answer
2020-07-30T10:38:37-0400



Solution:Find the tangential accelerationaτ=v2v02s=v2v020.5πR==3690.5×3.14×5=3.44ms2then normal accelerationan=v2R=365=7.2ms2Acceleration at point B isthe vector sum of two componentsa=aτ2+an2=3.442+7.22=7.98ms2Solution:\\Find\ the\ tangential\ acceleration\\a_\tau=\frac{v^2-v_0^2}{s}=\frac{v^2-v_0^2}{0.5\pi R}=\\ =\frac{36-9}{0.5\times3.14\times5 }=3.44\frac{m}{s^2}\\then\ normal\ acceleration\\a_n=\frac{v^2}{R}=\frac{36}{5}=7.2\frac{m}{s^2}\\Acceleration\ at\ point\ B\ is \\the\ vector\ sum\ of\ two\ components \\a=\sqrt{a_\tau^2+a_n^2}=\sqrt{3.44^2+7.2^2}=7.98\frac{m}{s^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment