1a. The length of the circle arc is:
"L = \\pi r\\dfrac{\\theta}{180\\degree} = \\pi \\cdot 5\\dfrac{102\\degree}{180\\degree} \\approx8.9cm"
1b. Perimeter of the sector is the length of the circle arc and two bounding radii. Thus:
"P = L + 2r = 8.9+10 = 18.9 cm"Answer. a) 8.9 cm, b) 18.9 cm.
2a. The area of sector is given by:
"A = \\pi r^2 \\dfrac{x}{360\\degree}" Then
"x = \\dfrac{360\\degree A}{\\pi r^2} = \\dfrac{360\\degree\\cdot 21}{\\pi \\cdot 5.2^2}\\approx89\\degree" 2b. The length of the circle arc is:
"L = \\pi r\\dfrac{\\theta}{180\\degree} = \\pi \\cdot 5.2\\dfrac{89\\degree}{180\\degree} \\approx8.1cm" 2c. Perimeter of the sector is the length of the circle arc and two bounding radii. Thus:
"P = L + 2r = 8.1+10.4 = 18.5 cm" Answer. a) 89 degrees, b) 8.1 cm, c) 18.5 cm.
3a. Perimeter of the sector is the length of the circle arc and two bounding radii:
"P = L + 2r" Substituting the expression for "L", get:
"P = L + 2r = \\pi r\\dfrac{\\theta}{180\\degree} + 2r = r\\left(\\pi\\dfrac{\\theta}{180\\degree} + 2 \\right)" Expressing "r", obtain:
"r = \\dfrac{P}{\\pi\\dfrac{\\theta}{180\\degree} + 2} = \\dfrac{17.25}{\\pi\\dfrac{105\\degree}{180\\degree} + 2} \\approx 4.5m" 3b. The length of the circle arc is:
"L = \\pi r\\dfrac{\\theta}{180\\degree} = \\pi\\cdot 4.5\\dfrac{105\\degree}{180\\degree} \\approx 8.2m" 3c. The area of the sector is:
"A = \\pi r^2 \\dfrac{\\theta}{360\\degree} = \\pi\\cdot 4.5^2 \\dfrac{105\\degree}{360\\degree} \\approx 18.6m^2" Answer. a) 4.5m, b) 8.2m, c)18.6m^2.
Comments
Leave a comment