System momentum at first time:
"p=(m+M)V=mv, \\newline\nwhere\\space v \\space initial \\space speed\\space of \\space bullet."
Time while system fall:
"t=\\dfrac{d_2}{V_x}=\\dfrac{d_2}{V\\sin(\\theta)}"
Also we know:
"h_{1}+(r-r\\cos(\\theta))=V_{0y}t-\\dfrac{gt^2}{2}\\newline\nh_{1}+r(1-\\cos(\\theta))=V\\cos(\\theta)t-\\dfrac{gt^2}{2}\\newline\nh_{1}+r(1-\\cos(\\theta))=V\\cos(\\theta)\\dfrac{d_2}{V\\sin(\\theta)}-\\dfrac{gd^2_{2}}{2V^2\\sin^2(\\theta)}\\newline\nh_{1}+r(1-\\cos(\\theta))=d_2\\cot(\\theta)-\\dfrac{gd^2_{2}}{2V^2\\sin^2(\\theta)}=>\\newline\nh_{1}+r(1-\\cos(\\theta))-d_2\\cot(\\theta)=-\\dfrac{gd^2_{2}}{2V^2\\sin^2(\\theta)}=>\\newline\nV=\\dfrac{d_2\\sqrt{g}}{\\sin(\\theta)\\sqrt{2(-h_{1}-r(1-\\cos(\\theta))+d_2\\cot(\\theta)\n)}}\\newline\nV=\\dfrac{d_2}{\\sin(\\theta)}\\sqrt{\\dfrac{g}{2(-h_{1}-r(1-\\cos(\\theta))+d_2\\cot(\\theta))}}\\newline\nV=\\dfrac{2}{\\sqrt{3}\/2}\\sqrt{\\dfrac{10}{2(-1-0.3(1-1\/2)+2\/\\sqrt3)}}\\approx\\dfrac{2}{\\sqrt{3}\/2}\\sqrt{\\dfrac{10}{0.0094}}\\newline\nV\\approx\\dfrac{4}{1.73}\\times32.62\\approx75.42m\/s."
From the first equation:
"M=\\dfrac{mv}{V}-m=\\dfrac{5\\times 511}{75.42}-5\\approx28.88 g"
Comments
Thank you so much. Such great help
Leave a comment