Solution: According to the superposition principle "y_{result} (x,t) =y1 (x,t)+y2 (x,t)" . If we denote "\\beta =2\u03c0x \u2012 20\u03c0t+\\frac{\\phi}{2}" then we get
"y_{result} (x,t) =2sin(\\beta-\\frac{\\phi}{2})+2 sin(\\beta+\\frac{\\phi}{2})=\\\\=2\\cdot [sin(\\beta)\\cdot cos(\\frac{\\phi}{2})-cos(\\beta)\\cdot sin(\\frac{\\phi}{2})]+2\\cdot [sin(\\beta)\\cdot cos(\\frac{\\phi}{2})+cos(\\beta)\\cdot sin(\\frac{\\phi}{2})]=\\\\=4\\cdot sin(\\beta)\\cdot cos(\\frac{\\phi}{2})"
Answer: the following wave functions represents the resultant wave due to the interference between the two waves: "y_{result} (x,t) ==4\\cdot sin(2\u03c0x \u2012 20\u03c0t+\\frac{\\phi}{2})\\cdot cos(\\frac{\\phi}{2})"
Comments
Leave a comment