Solution: According to the superposition principle yresult(x,t)=y1(x,t)+y2(x,t) . If we denote β=2πx‒20πt+2ϕ then we get
yresult(x,t)=2sin(β−2ϕ)+2sin(β+2ϕ)==2⋅[sin(β)⋅cos(2ϕ)−cos(β)⋅sin(2ϕ)]+2⋅[sin(β)⋅cos(2ϕ)+cos(β)⋅sin(2ϕ)]==4⋅sin(β)⋅cos(2ϕ)
Answer: the following wave functions represents the resultant wave due to the interference between the two waves: yresult(x,t)==4⋅sin(2πx‒20πt+2ϕ)⋅cos(2ϕ)
Comments