From the conditions of the problem, we have
"Q=6.1 \\cdot 10^{11} m"
"q=5.1 \\cdot 10^{11} m"
"M=2 \\cdot 10^{30} kg"
1) Define the semimajor axis of the orbit
"a=\\frac{Q+q}{2}=\\frac{6.1 \\cdot 10^{11} m+5.1 \\cdot 10^{11} m}{2}=5.6 \\cdot 10^{11} m"
2) Determine the circular velocity of the comet in orbit
"V_a=\\sqrt{\\frac{G(M+m)}{a}}"
neglecting a small value "m"
we write
"V_a=\\sqrt{\\frac{G \\cdot M)}{a}}=\\sqrt{\\frac{6.67 \\cdot 10^{-11} \\cdot 2 \\cdot 10^{30})}{5.6 \\cdot 10^{11}}}=1.543 \\cdot 10^4 m\/s=15.43 km\/s"
3) Then the speed of the comet at perihelion
"V_q=V_a \\cdot\\sqrt{\\frac{Q}{q}}=15.43 \\cdot\\sqrt{\\frac{6.1 \\cdot 10^{11}}{5.1 \\cdot 10^{11}}}=16.88 km\/s"
4) the speed of the comet in aphelion.
"V_Q=V_a \\cdot\\sqrt{\\frac{q}{Q}}=15.43 \\cdot\\sqrt{\\frac{5.1 \\cdot 10^{11}}{6.1 \\cdot 10^{11}}}=14.11 km\/s"
Comments
Leave a comment