Question #104268
A comet has an aphelion distance of 6.1 *10power 11 metre and perihelion distance of 5.1*10power 11 metre. The mass of the sun is 2.0*10power 30 kg. Calculate the speed of the comet at the perihelion and the aphelion.
1
Expert's answer
2020-03-02T10:04:06-0500


From the conditions of the problem, we have

Q=6.11011mQ=6.1 \cdot 10^{11} m

q=5.11011mq=5.1 \cdot 10^{11} m

M=21030kgM=2 \cdot 10^{30} kg

1) Define the semimajor axis of the orbit

a=Q+q2=6.11011m+5.11011m2=5.61011ma=\frac{Q+q}{2}=\frac{6.1 \cdot 10^{11} m+5.1 \cdot 10^{11} m}{2}=5.6 \cdot 10^{11} m

2) Determine the circular velocity of the comet in orbit

Va=G(M+m)aV_a=\sqrt{\frac{G(M+m)}{a}}

 neglecting a small value mm

we write

Va=GM)a=6.67101121030)5.61011=1.543104m/s=15.43km/sV_a=\sqrt{\frac{G \cdot M)}{a}}=\sqrt{\frac{6.67 \cdot 10^{-11} \cdot 2 \cdot 10^{30})}{5.6 \cdot 10^{11}}}=1.543 \cdot 10^4 m/s=15.43 km/s

3) Then the speed of the comet at perihelion

Vq=VaQq=15.436.110115.11011=16.88km/sV_q=V_a \cdot\sqrt{\frac{Q}{q}}=15.43 \cdot\sqrt{\frac{6.1 \cdot 10^{11}}{5.1 \cdot 10^{11}}}=16.88 km/s

4) the speed of the comet in aphelion.

VQ=VaqQ=15.435.110116.11011=14.11km/sV_Q=V_a \cdot\sqrt{\frac{q}{Q}}=15.43 \cdot\sqrt{\frac{5.1 \cdot 10^{11}}{6.1 \cdot 10^{11}}}=14.11 km/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS