"v=\\lambda ^\\alpha E^\\beta \\rho ^\\gamma"
"[\\lambda]=[m]=L"
"[E]=[Pa]=ML^{-1}T^{-2}"
"[\\rho]=[kg\/m^3]=ML^{-3}"
"[v]=[m\/s]=LT^{-1}"
"LT^{-1}=L^\\alpha(ML^{-1}T^{-2})^\\beta(ML^{-3})^\\gamma"
We have
"\\alpha-\\beta-3\\gamma=1"
"\\beta+\\gamma=0"
"-2\\beta=-1"
The solution of the system gives
"\\alpha=0"
"\\beta=1\/2"
"\\gamma =-1\/2"
"v=\\lambda ^0 E^{1\/2} \\rho ^{-1\/2}=\\sqrt{\\frac{E}{\\rho}}" Answer.
Comments
Leave a comment