v=λαEβργv=\lambda ^\alpha E^\beta \rho ^\gammav=λαEβργ
[λ]=[m]=L[\lambda]=[m]=L[λ]=[m]=L
[E]=[Pa]=ML−1T−2[E]=[Pa]=ML^{-1}T^{-2}[E]=[Pa]=ML−1T−2
[ρ]=[kg/m3]=ML−3[\rho]=[kg/m^3]=ML^{-3}[ρ]=[kg/m3]=ML−3
[v]=[m/s]=LT−1[v]=[m/s]=LT^{-1}[v]=[m/s]=LT−1
LT−1=Lα(ML−1T−2)β(ML−3)γLT^{-1}=L^\alpha(ML^{-1}T^{-2})^\beta(ML^{-3})^\gammaLT−1=Lα(ML−1T−2)β(ML−3)γ
We have
α−β−3γ=1\alpha-\beta-3\gamma=1α−β−3γ=1
β+γ=0\beta+\gamma=0β+γ=0
−2β=−1-2\beta=-1−2β=−1
The solution of the system gives
α=0\alpha=0α=0
β=1/2\beta=1/2β=1/2
γ=−1/2\gamma =-1/2γ=−1/2
v=λ0E1/2ρ−1/2=Eρv=\lambda ^0 E^{1/2} \rho ^{-1/2}=\sqrt{\frac{E}{\rho}}v=λ0E1/2ρ−1/2=ρE Answer.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments