1)
"\\sum F=ma"
"F_{damp}=-bv=-b\\frac{dx(t)}{dt}"
"F_{el}=-kx(t)"
"-b\\frac{dx(t)}{dt}-kx(t)=m\\frac{d^2x(t)}{dt^2}"
"\\frac{d^2x(t)}{dt^2}+\\frac{b}{m}\\frac{dx(t)}{dt}+\\frac{k}{m}x(t)=0"
So, the differential equation of a damped haronic oscillator
"\\frac{d^2x(t)}{dt^2}+2\\beta\\frac{dx(t)}{dt}+\\omega^2_0 x(t)=0" ,
where "\\beta=\\frac{b}{2m}" and "\\omega_0=\\sqrt{\\frac{k}{m}}"
2)
The forces of resistance and friction are always directed against the direction of the velocity vector and reduce the kinetic energy of the body
3)
"E(t)=KE(t)+PE(t)=\\frac{1}{2}m(\\frac{dx}{dt})^2+\\frac{1}{2}kx^2(t)"
"x(t)=A_0e^{-\\beta t}\\cos(\\omega t+\\phi)"
"\\frac{dx}{dt}=-A_0e^{-\\beta t}[\\beta \\cos(\\omega t+\\phi)+\\omega \\sin(\\omega t+\\phi)]"
"E(t)=\\frac{1}{2}mA^2_0e^{-2\\beta t}[(\\beta^2+\\omega^2_0) \\cos^2(\\omega t+\\phi)+"
"+\\omega^2 \\sin^2(\\omega t+\\phi)+\\beta \\omega \\sin2(\\omega t+\\phi)]"
We have
"\\langle E(t) \\rangle=\\frac{1}{2}mA^2_0e^{-2\\beta t}[\\frac{\\beta^2+\\omega^2_0}{2}+\\frac{\\omega^2}{2}]="
"=\\frac{1}{2}mA^2_0e^{-2\\beta t}\\omega^2_0=E_0e^{-2\\beta t}"
Comments
Leave a comment