Question #102684
Write down the differential equation for a damped harmonic oscillator. What is the basis of representing the damping force in terms of velocity? Show that the average energy of a weakly damped oscillator is given by:
< E > = E0 exp (- 2bt)
1
Expert's answer
2020-02-24T10:47:45-0500

1)


F=ma\sum F=ma


Fdamp=bv=bdx(t)dtF_{damp}=-bv=-b\frac{dx(t)}{dt}


Fel=kx(t)F_{el}=-kx(t)


bdx(t)dtkx(t)=md2x(t)dt2-b\frac{dx(t)}{dt}-kx(t)=m\frac{d^2x(t)}{dt^2}


d2x(t)dt2+bmdx(t)dt+kmx(t)=0\frac{d^2x(t)}{dt^2}+\frac{b}{m}\frac{dx(t)}{dt}+\frac{k}{m}x(t)=0


So, the differential equation of a damped haronic oscillator


d2x(t)dt2+2βdx(t)dt+ω02x(t)=0\frac{d^2x(t)}{dt^2}+2\beta\frac{dx(t)}{dt}+\omega^2_0 x(t)=0 ,


where β=b2m\beta=\frac{b}{2m} and ω0=km\omega_0=\sqrt{\frac{k}{m}}

2)


The forces of resistance and friction are always directed against the direction of the velocity vector and reduce the kinetic energy of the body


3)


E(t)=KE(t)+PE(t)=12m(dxdt)2+12kx2(t)E(t)=KE(t)+PE(t)=\frac{1}{2}m(\frac{dx}{dt})^2+\frac{1}{2}kx^2(t)


x(t)=A0eβtcos(ωt+ϕ)x(t)=A_0e^{-\beta t}\cos(\omega t+\phi)


dxdt=A0eβt[βcos(ωt+ϕ)+ωsin(ωt+ϕ)]\frac{dx}{dt}=-A_0e^{-\beta t}[\beta \cos(\omega t+\phi)+\omega \sin(\omega t+\phi)]


E(t)=12mA02e2βt[(β2+ω02)cos2(ωt+ϕ)+E(t)=\frac{1}{2}mA^2_0e^{-2\beta t}[(\beta^2+\omega^2_0) \cos^2(\omega t+\phi)+


+ω2sin2(ωt+ϕ)+βωsin2(ωt+ϕ)]+\omega^2 \sin^2(\omega t+\phi)+\beta \omega \sin2(\omega t+\phi)]


We have


E(t)=12mA02e2βt[β2+ω022+ω22]=\langle E(t) \rangle=\frac{1}{2}mA^2_0e^{-2\beta t}[\frac{\beta^2+\omega^2_0}{2}+\frac{\omega^2}{2}]=


=12mA02e2βtω02=E0e2βt=\frac{1}{2}mA^2_0e^{-2\beta t}\omega^2_0=E_0e^{-2\beta t}








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS