From the conditions of the problem we have
"x=v_{0x}\\cdot t" (1)
"y=v_{0y}\\cdot t-g\\cdot t^2" (2)
From (1) we write
"t=\\frac{x}{v_{0x}}"
substitute in (2)
"y=v_{0y}\\cdot \\frac{x}{v_{0x}}-g\\cdot (\\frac{x}{v_{0x}})^2=x\\cdot \\frac{v_{0y}}{v_{0x}}-x^2\\cdot \\frac{g}{(v_{0x})^2}=-\\frac{g}{(v_{0x})^2}\\cdot x^2+\\frac{v_{0y}}{v_{0x}}\\cdot x" (3)
comparing equation (3) with equation "y=ax^2+bx+c"
get the expression
"a=-\\frac{g}{(v_{0x})^2}"
"b=\\frac{v_{0y}}{v_{0x}}"
"c=0"
Comments
Leave a comment