Answer to Question #100586 in Mechanics | Relativity for Kishwer

Question #100586
How about some practice working with hyperbolic trig function ? Recall that
SinhQ= e^Q- e^Q / 2
CoshQ= e^Q+e^/2
TanhQ sinhQ/CoshQ
a) verify that cosh^2- sinh^2= 1
B) tanhQ1+tanhQ/1+tanhQ2= tanh(Q1+Q2)
So that the law of composition of velocities from last wrrk just mrans that boost parameters add.
1
Expert's answer
2019-12-18T11:29:01-0500

a) For simplicity, Q=x.Q=x. Verify:


cosh2xsinh2x=[ex+ex2]2[exex2]2= =14[e2x+e2x+2exe2x][e2x+e2x2exe2x]= =44=1.\text{cosh}^2x-\text{sinh}^2x=\bigg[\frac{e^x+e^{-x}}{2}\bigg]^2-\bigg[\frac{e^x-e^{-x}}{2}\bigg]^2=\\ \space\\ =\frac{1}{4}[e^{2x}+e^{-2x}+2e^xe^{-2x}]-[e^{2x}+e^{-2x}-2e^xe^{-2x}]=\\ \space\\ =\frac{4}{4}=1.

b) For simplicity, Q1=x,Q2=y,tanh=thQ_1=x, Q_2=y, \text{tanh}=\text{th}.

On the one hand:


thx+thy1+thxthy=exexex+ex+eyeyey+ey1+exexex+exeyeyey+ey= =ex+yex+y+ey+xexy+ex+y+ex+yey+xexy(ex+ex)(ey+ey)[ex+y+ex+y+exy+exy]+[ex+yexyex+y+exy](ex+ex)(ey+ey)= =2ex+y2exy2ex+y+2exy=e(x+y)e(x+y)e(x+y)+e(x+y).\frac{\text{th}x+\text{th}y}{1+\text{th}x\cdot\text{th}y}=\frac{\frac{e^x-e^{-x}}{e^x+e^{-x}}+\frac{e^y-e^{-y}}{e^y+e^{-y}}}{1+\frac{e^x-e^{-x}}{e^x+e^{-x}}\cdot\frac{e^y-e^{-y}}{e^y+e^{-y}}}=\\ \space\\ =\frac{\frac{e^{x+y}-e^{-x+y}+e^{-y+x}-e^{-x-y}+e^{x+y}+e^{-x+y}-e^{-y+x}-e^{-x-y}}{(e^x+e^{-x})(e^y+e^{-y})}}{\frac{[e^{x+y}+e^{-x+y}+e^{x-y}+e^{-x-y}]+[e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}]}{(e^x+e^{-x})(e^y+e^{-y})}}=\\ \space\\ =\frac{2e^{x+y}-2e^{-x-y}}{2e^{x+y}+2e^{-x-y}}=\frac{e^{(x+y)}-e^{-(x+y)}}{e^{(x+y)}+e^{-(x+y)}}.

On the other hand, what we need to get is


th(x+y)=e(x+y)e(x+y)e(x+y)+e(x+y).\text{th}(x+y)=\frac{e^{(x+y)}-e^{-(x+y)}}{e^{(x+y)}+e^{-(x+y)}}.

We see that the right part of the previous step is the same as the last one. Verified!


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment