a) For simplicity, "Q=x." Verify:
"\\text{cosh}^2x-\\text{sinh}^2x=\\bigg[\\frac{e^x+e^{-x}}{2}\\bigg]^2-\\bigg[\\frac{e^x-e^{-x}}{2}\\bigg]^2=\\\\\n\\space\\\\\n=\\frac{1}{4}[e^{2x}+e^{-2x}+2e^xe^{-2x}]-[e^{2x}+e^{-2x}-2e^xe^{-2x}]=\\\\\n\\space\\\\\n=\\frac{4}{4}=1." b) For simplicity, "Q_1=x, Q_2=y, \\text{tanh}=\\text{th}".
On the one hand:
"\\frac{\\text{th}x+\\text{th}y}{1+\\text{th}x\\cdot\\text{th}y}=\\frac{\\frac{e^x-e^{-x}}{e^x+e^{-x}}+\\frac{e^y-e^{-y}}{e^y+e^{-y}}}{1+\\frac{e^x-e^{-x}}{e^x+e^{-x}}\\cdot\\frac{e^y-e^{-y}}{e^y+e^{-y}}}=\\\\\n\\space\\\\\n=\\frac{\\frac{e^{x+y}-e^{-x+y}+e^{-y+x}-e^{-x-y}+e^{x+y}+e^{-x+y}-e^{-y+x}-e^{-x-y}}{(e^x+e^{-x})(e^y+e^{-y})}}{\\frac{[e^{x+y}+e^{-x+y}+e^{x-y}+e^{-x-y}]+[e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}]}{(e^x+e^{-x})(e^y+e^{-y})}}=\\\\\n\\space\\\\\n=\\frac{2e^{x+y}-2e^{-x-y}}{2e^{x+y}+2e^{-x-y}}=\\frac{e^{(x+y)}-e^{-(x+y)}}{e^{(x+y)}+e^{-(x+y)}}." On the other hand, what we need to get is
"\\text{th}(x+y)=\\frac{e^{(x+y)}-e^{-(x+y)}}{e^{(x+y)}+e^{-(x+y)}}." We see that the right part of the previous step is the same as the last one. Verified!
Comments
Leave a comment