Answer to Question #100471 in Mechanics | Relativity for Magdalene

Question #100471
A particle with velocity v0= -2i+4j in meters per second at t=0 undergoes a constant acceleration a of magnitude a=3ms^-2 at an angle =130° from the positive direction of the x axis. What is the particles velocity v at t=5s, in unit vector notation and as a magnitude and an angle?
1
Expert's answer
2019-12-16T11:05:19-0500

First of all we determine the unit vector with direction of acceleration. This may be done by expression n^=i^cosα+j^sinα\hat n=\hat i\cdot cos\alpha+\hat j\cdot sin\alpha , where α=130°\alpha=130\degree. Vector of acceleration will be a=an^\overrightarrow{a}=a\cdot \hat n . The equation of evolution of velocity is V=V0+at\overrightarrow{V}=\overrightarrow{V_0}+\overrightarrow{a} \cdot t . In unit vector notation we can rewrite this equation in the form V=2i^+4j^+atcosαi^+atsinαj^\overrightarrow{V}=-2\hat i+4 \hat j+a\cdot t\cdot cos\alpha\cdot \hat i+a\cdot t\cdot sin\alpha\cdot \hat j . After reduction of similar terms we get V=(2+atcosα)i^+(4+atsinα)j^\overrightarrow{V}=(-2+a\cdot t\cdot cos\alpha )\cdot\hat i+(4+a\cdot t\cdot sin\alpha) \hat j . At t=5st=5s the velocity will be

V[m/s]=(2+35cos(130°))i^+(4+35sin(130°))j^=\overrightarrow{V}[m/s]=(-2+3\cdot 5\cdot cos (130\degree) )\cdot\hat i+(4+3\cdot 5\cdot sin(130 \degree)) \hat j= 11.64i^+15.49j^-11.64\cdot \hat i+15.49\cdot \hat j

It's magnitude is V=(VV)=(11.64)2+(15.49)2=19.38 m/sV=\sqrt{(\overrightarrow{V}\cdot \overrightarrow{V})}=\sqrt{(-11.64)^2+(15.49)^2}=19.38\ m/s and an angle from the positive direction of the x axis is β=acos(11.64/19.38)=126.91°\beta=acos(-11.64/19.38)=126.91\degree .

Answer: The partical velocity is V[m/s]=11.64i^+15.49j^\overrightarrow{V}[m/s]=-11.64\cdot \hat i+15.49\cdot \hat j the magnitude 19.38 m/s19.38\ m/s , and an angle from the positive direction of the x axis is 126.91°126.91\degree .

.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment