"W=\\int_0^1((xy+3z)+(2y^2 -x^2)x+(z-2y)2x^2)dx"
"W=\\int_0^1Idx"
"(xy+3z)=x\\frac{x^2}{2}+2x^3=\\frac{5x^3}{2}"
"(2y^2 -x^2)x=\\left(2\\left(\\frac{x^2}{2}\\right)^2 -x^2\\right)x=\\left(\\frac{x^5}{2} -x^3\\right)"
"(z-2y)2x^2=\\left(\\frac{2x^3}{3}-x^2\\right)2x^2=\\left(\\frac{4x^5}{3}-2x^4\\right)"
"I=\\frac{5x^3}{2}+\\left(\\frac{x^5}{2} -x^3\\right)+\\left(\\frac{4x^5}{3}-2x^4\\right)=\\left(\\frac{11x^5}{6}+\\frac{3x^3}{2}-2x^4\\right)"
"W=\\int_0^1\\left(\\frac{11x^5}{6}+\\frac{3x^3}{2}-2x^4\\right)dx"
"W=\\left(\\frac{11}{6(6)}+\\frac{3}{2(4)}-2\\frac{1}{5}\\right)=\\frac{101}{360}\\approx 0.28"
Comments
Leave a comment