Assume "m_1 = 2\u00d710^{-9} \\text{ kg}", "m_2 = 25\u00d710^{-9} \\text{ kg}"
1) Distances to masses "r = r_1 =r_2=3 \\text{ m}"
Gravitational field, created by masses:
As gravitational field is Vector sum of gravitational field gives
"|\\vec{g}| = \\frac{G(m_2-m_1)}{r^2} = 1.854*10^{-19} \\text{ ms}^{-2}"
2) Distances to masses "r = r_1 =r_2=\\sqrt{3^2+4^2} \\text{ m} = 5 \\text{ m}"
Use a law of cosine to find resulting magnitude:
angle between forces F1 and F2 : "\\alpha = 2 \\arccos\\frac{4}{5}" , "\\cos \\alpha = \\frac{7}{25}"
Hence,
"|\\vec{g}| = \\sqrt{g_1^2+g_2^2-2 g_1 g_2 \\cos (\\pi - \\alpha)} = \\frac{G}{r^2}\\sqrt{m_1^2+m_2^2+2 m_1 m_2 \\cos (2 \\arccos\\frac{4}{5})}"
"|\\vec{g}| = \\frac{G}{r^2}\\sqrt{m_1^2+m_2^2+\\frac{14}{25} m_1 m_2 } = 6.843*10^{-20} \\text{ ms}^{-2}"
Comments
Leave a comment