Due to Gauss Law the electric field at any point of the sphere of radius R , perpendicular to its surface and is equal in magnitude equals:
"E=\\frac{q}{4\\times\\pi\\times e\\times r^2};"
where e=const and "e=8.8\\times 10^{-12};"
The flow through the spherical surface F is equal:
"F=E\\times S;"
Where S is a sphere area:
"S=4\\times \\pi\\times R^2;"
As a sphere has a hole, so we should minus its area from sphere area:
"F=E\\times (S-s);"
"s=2\\times \\pi\\times r^{2}\\times (1-\\cos \\theta )";
where r - radius of a hole;
So:
"F=\\frac{q}{4\\times \\pi\\times e\\times r^2}\\times (4\\times \\pi\\times R^2-2\\times \\pi\\times r^2\\times (1-cos\\theta)) = \\frac{q}{4\\times e\\times r^2} \\times (4\\times R^2-2\\times r^2);"
"F=\\frac{2\\times 10E-9}{4\\times 8.8\\times 10^{-12} \\times 1^2} \\times (4\\times 1^2-2\\times 0.1^2)=226.14=2.26*10^2;"
Comments
Leave a comment