Let "I" be the current in coil
Then flux density at the centre of coil due to current will be
"\\frac{\\mu_oNI}{2R}=\\frac{4\\pi\\times10^{-7}\\times 10I}{2\\times 6\\times 10^{-2}}" Now applying two condition when current is on and current is off
And
Square of oscillatiDon frequency directly proportional to flux density
Then
"\\frac{(30)^2}{(15)^2}=\\frac{resultant\\ field}{earth\\ field}=\\frac{\\sqrt{(1.0472\\times 10^{-4}I)^2+(2\\times 10^{-5})^2}}{2\\times 10^{-5}}"
"60\\times 10^{-10}=1.0966\\times 10^{-8}I^2"
"Or"
"0.5471=I^2" Or
"I=0.74\\ A"
Comments
Leave a comment