Both problems can be solved by using the following approach. First of all, the net electric field in the point P is equal to:
"\\vec{E} = \\vec{E}_A+\\vec{E}_B \\\\ \\Rightarrow E_x=E_{Ax}+E_{Bx}, \\, E_y = E_{Ay}+E_{By} \\\\ \\Rightarrow E = \\sqrt{E_x^2+E_y^2}, \\gamma = \\arctan{\\frac{E_y}{E_x}}" We will also need the angles APO and BPO (assuming them to be positively defined)
"\\angle APO \\equiv \\alpha = \\arctan{\\frac{y_A}{x_P}}\\\\\n\\angle BPO \\equiv \\beta = \\arctan{\\frac{|y_B|}{x_P}}" and distances squared
"AP^2\\equiv r_A^2=x_P^2 +y_A^2\\\\\nBP^2\\equiv r_B^2=x_P^2 +y_B^2" Finally, the absolute values of the constituting electric fields and their projections:
"E_A = k \\frac{|q_A|}{r_A^2}, \\, E_{Ax} = \\pm E_A \\cos{\\alpha}, \\, E_{Ay} = \\pm E_A \\sin{\\alpha}\\\\\nE_B = k \\frac{|q_B|}{r_B^2}, \\,E_{Bx} = \\pm E_B \\cos{\\beta}, \\, E_{By} = \\pm E_B \\sin{\\beta}"The sign of the projections depends on the field vector direction.
Substituting the numerical values, we obtain:
1)
"r_A^2 = 0.08, \\, r_B^2 = 0.20\\\\\n\\alpha = 45^\\circ, \\, \\beta = 63.435^\\circ""E_A = 562.5 \\, \\frac{N}{C}, \\, E_{Ax}=-397.748\\, \\frac{N}{C}, \\, E_{Ay}=397.748 \\, \\frac{N}{C}\\\\\nE_B = 90 \\, \\frac{N}{C}, \\, E_{Bx}=40.249\\, \\frac{N}{C}, \\, E_{By}=80.498 \\, \\frac{N}{C}" Finally,
"E_x = -357.498 \\, \\frac{N}{C}, \\, E_y=478.246 \\, \\frac{N}{C} \\\\\n\\Rightarrow E = 597.097 \\, \\frac{N}{C}" 2)
"r_A^2 = 0.05, \\, r_B^2 = 0.26\\\\\n\\alpha = 63.435^\\circ, \\, \\beta = 78.690^\\circ"
"E_A = 180 \\, \\frac{N}{C}, \\, E_{Ax}=80.498\\, \\frac{N}{C}, \\, E_{Ay}=-160.997 \\, \\frac{N}{C}\\\\\nE_B = 103.85\\, \\frac{N}{C}, \\, E_{Bx}=20.366\\, \\frac{N}{C}, \\, E_{By}=101.83 \\, \\frac{N}{C}" Finally,
"E_x =100.864 \\, \\frac{N}{C}, \\, E_y=-59.167 \\, \\frac{N}{C} \\\\\n\\Rightarrow \\gamma = -30.396^\\circ"
Comments
Leave a comment