Question #89925
Derive an expression for the electric field at a point :
(i) along the axis of a dipole, and
(ii) on the perpendicular bisector of the
dipole axis
1
Expert's answer
2019-05-24T09:55:53-0400

(i)





E=E1+E2(1)E=E_1+E_2 (1)

where


E1=14πɛ0q(ra)2E_1=\frac { 1}{4\pi ɛ_0}\frac { q}{(r-a) ^2}


E2=14πɛ0q(r+a)2E_2=\frac { 1}{4\pi ɛ_0}\frac { -q}{(r+a) ^2}

Using (1) we got:


E=14πɛ04aqr(r2a2)2(2)E=\frac { 1}{4\pi ɛ_0} 4aq \frac { r}{(r^2-a^2) ^2} (2)

The dipole moment (p) is given by formula


p=2qa(3)p=2qa (3)

We put (3) in (2):


E=12πɛ0pr(r2a2)2(4)E=\frac { 1}{2\pi ɛ_0} \frac { pr}{(r^2-a^2) ^2} (4)

Consider the far field case (i.e., the case where r >> a)

Then one can see that r2 >> a2, which allows us to simplify the equation in the far field.


E=12πɛ0pr3E=\frac { 1}{2\pi ɛ_0} \frac { p}{r^3}

(ii)






E=2E1 cosθ(1)E=2E_1 \ cos θ (1)

where


E1=14πɛ0qa2+x2E_1=\frac { 1}{4\pi ɛ_0} \frac { q}{a ^2+x^2}

 cosθ=aa2+x2\ cos θ=\frac { a}{\sqrt { a ^2+x^2}}

Using (1) we got:


E=14πɛ02qaa2+x23E=\frac { 1}{4\pi ɛ_0} \frac { 2qa}{ \sqrt[3]{ a ^2+x^2}}

By inspection we can conclude that when x>>a then this approaches


E=14πɛ02qax3E=\frac { 1}{4\pi ɛ_0} \frac { 2qa}{ x^3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS