(i)
"E=E_1+E_2 (1)"
where
"E_1=\\frac { 1}{4\\pi \u025b_0}\\frac { q}{(r-a) ^2}"
"E_2=\\frac { 1}{4\\pi \u025b_0}\\frac { -q}{(r+a) ^2}" Using (1) we got:
"E=\\frac { 1}{4\\pi \u025b_0} 4aq \\frac { r}{(r^2-a^2) ^2} (2)"
The dipole moment (p) is given by formula
"p=2qa (3)" We put (3) in (2):
"E=\\frac { 1}{2\\pi \u025b_0} \\frac { pr}{(r^2-a^2) ^2} (4)" Consider the far field case (i.e., the case where r >> a)
Then one can see that r2 >> a2, which allows us to simplify the equation in the far field.
"E=\\frac { 1}{2\\pi \u025b_0} \\frac { p}{r^3}"
(ii)
"E=2E_1 \\ cos \u03b8 (1)" where
"E_1=\\frac { 1}{4\\pi \u025b_0} \\frac { q}{a ^2+x^2}"
"\\ cos \u03b8=\\frac { a}{\\sqrt { a ^2+x^2}}"
Using (1) we got:
"E=\\frac { 1}{4\\pi \u025b_0} \\frac { 2qa}{ \\sqrt[3]{ a ^2+x^2}}" By inspection we can conclude that when x>>a then this approaches
"E=\\frac { 1}{4\\pi \u025b_0} \\frac { 2qa}{ x^3}"
Comments
Leave a comment