(i)
E = E 1 + E 2 ( 1 ) E=E_1+E_2 (1) E = E 1 + E 2 ( 1 )
where
E 1 = 1 4 π ɛ 0 q ( r − a ) 2 E_1=\frac { 1}{4\pi ɛ_0}\frac { q}{(r-a) ^2} E 1 = 4 π ɛ 0 1 ( r − a ) 2 q
E 2 = 1 4 π ɛ 0 − q ( r + a ) 2 E_2=\frac { 1}{4\pi ɛ_0}\frac { -q}{(r+a) ^2} E 2 = 4 π ɛ 0 1 ( r + a ) 2 − q Using (1) we got:
E = 1 4 π ɛ 0 4 a q r ( r 2 − a 2 ) 2 ( 2 ) E=\frac { 1}{4\pi ɛ_0} 4aq \frac { r}{(r^2-a^2) ^2} (2) E = 4 π ɛ 0 1 4 a q ( r 2 − a 2 ) 2 r ( 2 )
The dipole moment (p) is given by formula
p = 2 q a ( 3 ) p=2qa (3) p = 2 q a ( 3 ) We put (3) in (2):
E = 1 2 π ɛ 0 p r ( r 2 − a 2 ) 2 ( 4 ) E=\frac { 1}{2\pi ɛ_0} \frac { pr}{(r^2-a^2) ^2} (4) E = 2 π ɛ 0 1 ( r 2 − a 2 ) 2 p r ( 4 ) Consider the far field case (i.e., the case where r >> a)
Then one can see that r2 >> a2 , which allows us to simplify the equation in the far field.
E = 1 2 π ɛ 0 p r 3 E=\frac { 1}{2\pi ɛ_0} \frac { p}{r^3} E = 2 π ɛ 0 1 r 3 p
(ii)
E = 2 E 1 c o s θ ( 1 ) E=2E_1 \ cos θ (1) E = 2 E 1 cos θ ( 1 ) where
E 1 = 1 4 π ɛ 0 q a 2 + x 2 E_1=\frac { 1}{4\pi ɛ_0} \frac { q}{a ^2+x^2} E 1 = 4 π ɛ 0 1 a 2 + x 2 q
c o s θ = a a 2 + x 2 \ cos θ=\frac { a}{\sqrt { a ^2+x^2}} cos θ = a 2 + x 2 a
Using (1) we got:
E = 1 4 π ɛ 0 2 q a a 2 + x 2 3 E=\frac { 1}{4\pi ɛ_0} \frac { 2qa}{ \sqrt[3]{ a ^2+x^2}} E = 4 π ɛ 0 1 3 a 2 + x 2 2 q a By inspection we can conclude that when x>>a then this approaches
E = 1 4 π ɛ 0 2 q a x 3 E=\frac { 1}{4\pi ɛ_0} \frac { 2qa}{ x^3} E = 4 π ɛ 0 1 x 3 2 q a
Comments