q 1 + q 2 = 100 ⋅ 1 0 − 6 C = 1 0 − 4 C q_1 + q_2 = 100\cdot 10^{-6} C = 10^{-4} C q 1 + q 2 = 100 ⋅ 1 0 − 6 C = 1 0 − 4 C On the other hand
F = k q 1 q 2 r 2 F = \frac{kq_1 q_2}{r^2} F = r 2 k q 1 q 2 with k = 9 109 N m2 /C2 . The charges repel, so their values have the same sign. Hence
{ q 1 + q 2 = 1 0 − 4 C q 1 q 2 = F r 2 / k = 25 ⋅ 1 0 − 10 C 2 \bigg\{\begin{matrix}
q_1 + q_2 & = & 10^{-4} C \\
q_1 q_2 & = & Fr^2/k = 25 \cdot 10^{-10} C^2
\end{matrix} { q 1 + q 2 q 1 q 2 = = 1 0 − 4 C F r 2 / k = 25 ⋅ 1 0 − 10 C 2
( 1 0 − 4 C − q 1 ) q 1 = 2.5 ⋅ 1 0 − 9 C (10^{-4} C - q_1) q_1 = 2.5 \cdot 10^{-9} C ( 1 0 − 4 C − q 1 ) q 1 = 2.5 ⋅ 1 0 − 9 C q 1 2 − 1 0 − 4 C ⋅ q 1 + 2.5 ⋅ 1 0 − 9 C 2 = 0 q_1^2 -10^{-4} C \cdot q_1 + 2.5\cdot 10^{-9} C^2 = 0 q 1 2 − 1 0 − 4 C ⋅ q 1 + 2.5 ⋅ 1 0 − 9 C 2 = 0 q 1 = 1 2 ( 1 0 − 4 ± 1 0 − 8 − 4 ⋅ 2.5 ⋅ 1 0 − 9 ) C = 5 ⋅ 1 0 − 5 C q_1 = \frac{1}{2} \bigg( 10^{-4} \pm \sqrt{10^{-8} - 4\cdot 2.5 \cdot 10^{-9}}\bigg) C = 5 \cdot 10^{-5} C q 1 = 2 1 ( 1 0 − 4 ± 1 0 − 8 − 4 ⋅ 2.5 ⋅ 1 0 − 9 ) C = 5 ⋅ 1 0 − 5 C q 2 = 5 ⋅ 1 0 − 5 C q_2 = 5\cdot 10^{-5} C q 2 = 5 ⋅ 1 0 − 5 C
Comments