Question #88359
A thread charged homogeneously with line density λ=3.47 μC/m forms a loop in the shape of a cut circle with radius r=6.12m, cut by a line parallel to the y-axis with length l=10.54. Calculate the elctric field at the center of the circle. State direction and magnitude of the electric field vector.
1
Expert's answer
2019-04-22T11:09:03-0400

Charge line density λ=3.47μC/m\lambda = 3.47 \, \mu\text{C/m}

Radius of circle r=6.12mr = 6.12 \, \text{m}

Length of cut L=10.54mL = 10.54 \, \text{m}

Lets divide arc by small parts with angle dφd\varphi . It has length dl=rdφdl = rd\varphi and charge dq=λrdφdq = \lambda r d\varphi , therefore produces electric field with magnitude


dEy=14πε0λrdφr2sinφ,dEy=14πε0λrdφr2cosφdE_y = - \frac{1}{4\pi\varepsilon_0}\frac{\lambda r d \varphi}{r^2} \sin \varphi, \, dE_y = - \frac{1}{4\pi\varepsilon_0}\frac{\lambda r d \varphi}{r^2} \cos \varphi

As electromagnetic field obeys superposition principle, therefore we integrate in ranges from θ-\theta to θ\theta :



Ex=14πε0θθλrdφr2sinφ=λ4πε0rcosφθθ=0E_x = - \frac{1}{4\pi\varepsilon_0}\int_{-\theta}^{\theta} \frac{\lambda r d \varphi}{r^2} \sin \varphi = \frac{\lambda}{4\pi\varepsilon_0 r} \cos \varphi |_{-\theta}^{\theta} = 0

Ey=14πε0θθλrdφr2cosφ=λ4πε0rsinφθθ=λ2πε0rsinθE_y = - \frac{1}{4\pi\varepsilon_0}\int_{-\theta}^{\theta} \frac{\lambda r d \varphi}{r^2} \cos \varphi =- \frac{\lambda}{4\pi\varepsilon_0 r} \sin \varphi |_{-\theta}^{\theta} = - \frac{\lambda}{2\pi\varepsilon_0 r} \sin \theta

where θ defines as

sinθ=L2rsin \theta = \frac{L}{2r}

Therefore, magnitude of electric field equals to abs. value of y component and directed parallel to y-line opposite to arc.


Ey=λL4πε0r2,Ex=0E_y = - \frac{\lambda L}{4\pi\varepsilon_0 r^2},\, E_x=0

E=λL4πε0r2=8788V/mE=\frac{\lambda L}{4\pi\varepsilon_0 r^2}= 8788 \text{V/m}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS