Charge line density "\\lambda = 3.47 \\, \\mu\\text{C\/m}"
Radius of circle "r = 6.12 \\, \\text{m}"
Length of cut "L = 10.54 \\, \\text{m}"
Lets divide arc by small parts with angle "d\\varphi" . It has length "dl = rd\\varphi" and charge "dq = \\lambda r d\\varphi" , therefore produces electric field with magnitude
As electromagnetic field obeys superposition principle, therefore we integrate in ranges from "-\\theta" to "\\theta" :
"E_y = - \\frac{1}{4\\pi\\varepsilon_0}\\int_{-\\theta}^{\\theta} \\frac{\\lambda r d \\varphi}{r^2} \\cos \\varphi =- \\frac{\\lambda}{4\\pi\\varepsilon_0 r} \\sin \\varphi |_{-\\theta}^{\\theta} = - \\frac{\\lambda}{2\\pi\\varepsilon_0 r} \\sin \\theta"
where θ defines as
"sin \\theta = \\frac{L}{2r}"Therefore, magnitude of electric field equals to abs. value of y component and directed parallel to y-line opposite to arc.
"E=\\frac{\\lambda L}{4\\pi\\varepsilon_0 r^2}= 8788 \\text{V\/m}"
Comments
Leave a comment