First, we find the vectors for each force to add them in total and with this, we will find the force exerted on q3 : r 13 ⃗ = r 3 ⃗ − r 1 ⃗ = ( − 1.20 m , − 0.50 m ) r 23 ⃗ = r 3 ⃗ − r 2 ⃗ = ( 1.20 m , − 0.50 m ) ∣ ∣ r 23 ⃗ ∣ ∣ = ∣ ∣ r 13 ⃗ ∣ ∣ = ( − 0.50 m ) 2 + ( ± 1.20 m ) 2 ∣ ∣ r 23 ⃗ ∣ ∣ = ∣ ∣ r 13 ⃗ ∣ ∣ = r = 1.30 m \vec{r_{13}}=\vec{r_3}-\vec{r_1}=(-1.20m,-0.50m)
\\ \vec{r_{23}}=\vec{r_3}-\vec{r_2}=(1.20m,-0.50m)
\\ || \vec{r_{23}}||=|| \vec{r_{13}}||=\sqrt{(-0.50\,m)^2+(\plusmn 1.20\,m)^2}
\\ || \vec{r_{23}}||=|| \vec{r_{13}}||=r=1.30\,m r 13 = r 3 − r 1 = ( − 1.20 m , − 0.50 m ) r 23 = r 3 − r 2 = ( 1.20 m , − 0.50 m ) ∣∣ r 23 ∣∣ = ∣∣ r 13 ∣∣ = ( − 0.50 m ) 2 + ( ± 1.20 m ) 2 ∣∣ r 23 ∣∣ = ∣∣ r 13 ∣∣ = r = 1.30 m
The size of the distance between q1 =q2 and q3 is r = 1.30 m. We can find the normal vectors for each distance as
r 13 ^ = ( − 1.20 m , − 0.50 m ) / ( 1.30 m ) = ( − 12 13 , − 5 12 ) r 23 ^ = ( 1.20 m , − 0.50 m ) / ( 1.30 m ) = ( 12 13 , − 5 13 ) \widehat{r_{13}}=(-1.20m,-0.50m)/(1.30\,m)=(-\frac{12}{13},-\frac{5}{12})
\\ \widehat{r_{23}}=(1.20m,-0.50m)/(1.30\,m)=(\frac{12}{13},-\frac{5}{13}) r 13 = ( − 1.20 m , − 0.50 m ) / ( 1.30 m ) = ( − 13 12 , − 12 5 ) r 23 = ( 1.20 m , − 0.50 m ) / ( 1.30 m ) = ( 13 12 , − 13 5 )
Then we use F e l e c t r i c = ∑ i , j k q i q j r i j 2 r i j ^ F_{electric}=\sum_{i,j} \dfrac{kq_iq_j}{r_{ij}^2}\widehat{r_{ij}} F e l ec t r i c = ∑ i , j r ij 2 k q i q j r ij to find the total electric force
F e l e c t r i c = k q 1 q 3 r 2 r 13 ^ + k q 2 q 3 r 2 r 23 ^ F_{electric}=\dfrac{kq_1q_3}{r^2}\widehat{r_{13}}+\dfrac{kq_2q_3}{r^2}\widehat{r_{23}} F e l ec t r i c = r 2 k q 1 q 3 r 13 + r 2 k q 2 q 3 r 23
We proceed to substitute and we use the fact that q1 =q2 :
F e l e c t r i c ⃗ = k q 1 q 3 r 2 [ r 13 ^ + r 23 ^ ] F e l e c t r i c ⃗ = k q 1 q 3 r 2 [ ( − 12 13 , − 5 13 ) + ( 12 13 , − 5 13 ) ] F e l e c t r i c ⃗ = k q 1 q 3 r 2 ⋅ ( 0 , − 10 13 ) = − ( 10 13 k q 1 q 3 r 2 ) j ^ F e l e c t r i c ⃗ = ( − 10 ) ( 9 × 1 0 9 N m 2 / C 2 ) ( 4 × 1 0 − 6 C ) ( 7 × 1 0 − 6 C ) ( 13 ) ( 1.30 m ) 2 j ^ ∴ F e l e c t r i c ⃗ = − ( 0.114702 N ) j ^ \vec{F_{electric}}=\dfrac{kq_1q_3}{r^2}\Big[ \widehat{r_{13}}+\widehat{r_{23}} \Big]
\\ \vec{F_{electric}}=\dfrac{kq_1q_3}{r^2}\Big[ (-\frac{12}{13},-\frac{5}{13})+(\frac{12}{13},-\frac{5}{13})\Big]
\\ \vec{F_{electric}}=\dfrac{kq_1q_3}{r^2}\cdot (0,-\frac{10}{13})=-(\frac{10}{13}\frac{kq_1q_3}{r^2})\widehat{j}
\\ \vec{F_{electric}}=\frac{(-10)(9\times10^{9}Nm^2/C^2)(4\times10^{-6}C)(7\times10^{-6}C)}{(13)(1.30\,m)^2}\widehat{j}
\\ \therefore \vec{F_{electric}}=-(0.114702\,N)\widehat{j} F e l ec t r i c = r 2 k q 1 q 3 [ r 13 + r 23 ] F e l ec t r i c = r 2 k q 1 q 3 [ ( − 13 12 , − 13 5 ) + ( 13 12 , − 13 5 ) ] F e l ec t r i c = r 2 k q 1 q 3 ⋅ ( 0 , − 13 10 ) = − ( 13 10 r 2 k q 1 q 3 ) j F e l ec t r i c = ( 13 ) ( 1.30 m ) 2 ( − 10 ) ( 9 × 1 0 9 N m 2 / C 2 ) ( 4 × 1 0 − 6 C ) ( 7 × 1 0 − 6 C ) j ∴ F e l ec t r i c = − ( 0.114702 N ) j
This means that the magnitude of the electric force is F = 0.114702 N and the direction is − j ^ -\widehat{j} − j
2. Since the electric force and field for a certain charge are related, we know that F e l e c t r i c ⃗ = q ⋅ E e l e c t r i c ⃗ \vec{F_{electric}}=q\cdot\vec{ E_{electric}} F e l ec t r i c = q ⋅ E e l ec t r i c so we use that relationship to find E:
E e l e c t r i c ⃗ = 1 q 3 F e l e c t r i c ⃗ E e l e c t r i c ⃗ = ( 1 7 × 1 0 − 6 C ) ( − ( 0.114702 N ) j ^ ) ∴ E e l e c t r i c ⃗ = − ( 16386 N / C ) j ^ \vec{ E_{electric}}=\frac{1}{q_3}\vec{ F_{electric}}
\\ \vec{ E_{electric}}=(\frac{1}{7\times 10^{-6}C})(-(0.114702\,N)\widehat{j})
\\ \therefore \vec{ E_{electric}}=-(16386\,N/C)\widehat{j} E e l ec t r i c = q 3 1 F e l ec t r i c E e l ec t r i c = ( 7 × 1 0 − 6 C 1 ) ( − ( 0.114702 N ) j ) ∴ E e l ec t r i c = − ( 16386 N / C ) j
In conclusion, the magnitude of the total electric field at (0, -0.50 m) is 16386 N/C.
Comments
Leave a comment