Let the charge of 18 µC be q 1 q_1 q 1 , the charge of −12 µC be q 2 q_2 q 2 and the charge of 45 µC be q 3 q_3 q 3 . Let's first find the magnitude of the force with which the charge q 1 q_1 q 1 acts on charge q 3 q_3 q 3 :
F 13 = k q 1 q 3 r 13 2 = k q 1 q 3 ( r 12 2 + r 23 2 ) 2 , F_{13}=\dfrac{kq_1q_3}{r_{13}^2}=\dfrac{kq_1q_3}{(\sqrt{r_{12}^2+r_{23}^2})^2}, F 13 = r 13 2 k q 1 q 3 = ( r 12 2 + r 23 2 ) 2 k q 1 q 3 , F 13 = 9 ⋅ 1 0 9 N m 2 C 2 ⋅ 18 ⋅ 1 0 − 6 C ⋅ 45 ⋅ 1 0 − 6 C ( ( 3 m ) 2 + ( 3 m ) 2 ) 2 = 0.405 N . F_{13}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot18\cdot10^{-6}\ C\cdot45\cdot10^{-6}\ C}{(\sqrt{(3\ m)^2+(3\ m)^2})^2}=0.405\ N. F 13 = ( ( 3 m ) 2 + ( 3 m ) 2 ) 2 9 ⋅ 1 0 9 C 2 N m 2 ⋅ 18 ⋅ 1 0 − 6 C ⋅ 45 ⋅ 1 0 − 6 C = 0.405 N . Similarly, let's find the magnitude of the force with which the charge q 2 q_2 q 2 acts on charge q 3 q_3 q 3 :
F 23 = k q 2 q 3 r 23 2 , F_{23}=\dfrac{kq_2q_3}{r_{23}^2}, F 23 = r 23 2 k q 2 q 3 , F 23 = 9 ⋅ 1 0 9 N m 2 C 2 ⋅ 12 ⋅ 1 0 − 6 C ⋅ 45 ⋅ 1 0 − 6 C ( 3 m ) 2 = 0.54 N . F_{23}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot12\cdot10^{-6}\ C\cdot45\cdot10^{-6}\ C}{(3\ m)^2}=0.54\ N. F 23 = ( 3 m ) 2 9 ⋅ 1 0 9 C 2 N m 2 ⋅ 12 ⋅ 1 0 − 6 C ⋅ 45 ⋅ 1 0 − 6 C = 0.54 N . Let's find the projections of forces F 13 F_{13} F 13 and F 23 F_{23} F 23 on axis x x x and y y y :
F 13 , x = F 13 c o s 4 5 ∘ = 0.405 N ⋅ c o s 4 5 ∘ = 0.286 N , F_{13,x}=F_{13}cos45^{\circ}=0.405\ N\cdot cos45^{\circ}= 0.286\ N, F 13 , x = F 13 cos 4 5 ∘ = 0.405 N ⋅ cos 4 5 ∘ = 0.286 N , F 13 , y = F 13 s i n 4 5 ∘ = 0.405 N ⋅ s i n 4 5 ∘ = − 0.286 N , F_{13,y}=F_{13}sin45^{\circ}=0.405\ N\cdot sin45^{\circ}= -0.286\ N, F 13 , y = F 13 s in 4 5 ∘ = 0.405 N ⋅ s in 4 5 ∘ = − 0.286 N , F 23 , x = − 0.54 N , F_{23,x}=-0.54\ N, F 23 , x = − 0.54 N , F 23 , y = 0. F_{23,y}=0. F 23 , y = 0. Then, we get:
F x = F 13 , x + F 23 , x = 0.286 N + ( − 0.54 N ) = − 0.254 N , F_x=F_{13,x}+F_{23,x}=0.286\ N+(-0.54\ N)=-0.254\ N, F x = F 13 , x + F 23 , x = 0.286 N + ( − 0.54 N ) = − 0.254 N , F y = F 13 , y = − 0.286 N . F_y=F_{13,y}=-0.286\ N. F y = F 13 , y = − 0.286 N . We can find the net electrostatic force on the charge q 3 q_3 q 3 from the Pythagorean theorem:
F = F x 2 + F y 2 , F=\sqrt{F_x^2+F_y^2}, F = F x 2 + F y 2 , F = ( − 0.254 N ) 2 + ( − 0.286 N ) 2 = 0.382 N . F=\sqrt{(-0.254\ N)^2+(-0.286\ N)^2}=0.382\ N. F = ( − 0.254 N ) 2 + ( − 0.286 N ) 2 = 0.382 N . We can find the direction of the net electrostatic force on the charge q 3 q_3 q 3 from the geometry:
t a n θ = F y F x , tan\theta=\dfrac{F_y}{F_x}, t an θ = F x F y , θ = t a n − 1 ( F y F x ) , \theta=tan^{-1}(\dfrac{F_y}{F_x}), θ = t a n − 1 ( F x F y ) , θ = t a n − 1 ( − 0.286 N − 0.254 N ) = 48. 4 ∘ . \theta=tan^{-1}(\dfrac{-0.286\ N}{-0.254\ N})=48.4^{\circ}. θ = t a n − 1 ( − 0.254 N − 0.286 N ) = 48. 4 ∘ . The net electrostatic force on the charge q 3 q_3 q 3 directed at 48. 4 ∘ 48.4^{\circ} 48. 4 ∘ below the x x x -axis.
Comments
Leave a comment