Answer to Question #211505 in Electricity and Magnetism for Rocky Valmores

Question #211505

 Three charges are fixed to an xy-coordinate system. A charge of 18µC is on y = 3.0m. A charge of −12µC is at the origin. Lastly, a charge of 45µC is on the x-axis at x = 3.0m. Determine the magnitude and direction of the net electrostatic force on the charge at x = 3.0m


1
Expert's answer
2021-06-30T10:19:37-0400

Let the charge of 18 µC be q1q_1, the charge of −12 µC be q2q_2 and the charge of 45 µC be q3q_3. Let's first find the magnitude of the force with which the charge q1q_1 acts on charge q3q_3:


F13=kq1q3r132=kq1q3(r122+r232)2,F_{13}=\dfrac{kq_1q_3}{r_{13}^2}=\dfrac{kq_1q_3}{(\sqrt{r_{12}^2+r_{23}^2})^2},F13=9109 Nm2C218106 C45106 C((3 m)2+(3 m)2)2=0.405 N.F_{13}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot18\cdot10^{-6}\ C\cdot45\cdot10^{-6}\ C}{(\sqrt{(3\ m)^2+(3\ m)^2})^2}=0.405\ N.

Similarly, let's find the magnitude of the force with which the charge q2q_2 acts on charge q3q_3:


F23=kq2q3r232,F_{23}=\dfrac{kq_2q_3}{r_{23}^2},F23=9109 Nm2C212106 C45106 C(3 m)2=0.54 N.F_{23}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot12\cdot10^{-6}\ C\cdot45\cdot10^{-6}\ C}{(3\ m)^2}=0.54\ N.

Let's find the projections of forces F13F_{13} and F23F_{23} on axis xx and yy:


F13,x=F13cos45=0.405 Ncos45=0.286 N,F_{13,x}=F_{13}cos45^{\circ}=0.405\ N\cdot cos45^{\circ}= 0.286\ N,F13,y=F13sin45=0.405 Nsin45=0.286 N,F_{13,y}=F_{13}sin45^{\circ}=0.405\ N\cdot sin45^{\circ}= -0.286\ N,F23,x=0.54 N,F_{23,x}=-0.54\ N,F23,y=0.F_{23,y}=0.

Then, we get:


Fx=F13,x+F23,x=0.286 N+(0.54 N)=0.254 N,F_x=F_{13,x}+F_{23,x}=0.286\ N+(-0.54\ N)=-0.254\ N,Fy=F13,y=0.286 N.F_y=F_{13,y}=-0.286\ N.

We can find the net electrostatic force on the charge q3q_3 from the Pythagorean theorem:


F=Fx2+Fy2,F=\sqrt{F_x^2+F_y^2},F=(0.254 N)2+(0.286 N)2=0.382 N.F=\sqrt{(-0.254\ N)^2+(-0.286\ N)^2}=0.382\ N.

We can find the direction of the net electrostatic force on the charge q3q_3 from the geometry:


tanθ=FyFx,tan\theta=\dfrac{F_y}{F_x},θ=tan1(FyFx),\theta=tan^{-1}(\dfrac{F_y}{F_x}),θ=tan1(0.286 N0.254 N)=48.4.\theta=tan^{-1}(\dfrac{-0.286\ N}{-0.254\ N})=48.4^{\circ}.

The net electrostatic force on the charge q3q_3 directed at 48.448.4^{\circ} below the xx-axis.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment