2020-10-15T11:55:02-04:00
In Cartesian coordinates, verify that ∇•(MA) = A •∇M + M∇•A where A = xyz(ax + ay + az) and
M= 3xy + 4zx by carrying out the indicated derivatives.
1
2020-10-19T13:23:01-0400
A ⋅ ∇ M = ( x y z ( a x + a y + a z ) ) ∇ ( 3 x y + 4 z x ) = ( x y z ( a x + a y + a z ) ) ( 3 y + 4 z , 3 x , 4 x ) A \cdot∇M=(xyz(ax + ay + az))∇(3xy + 4zx)\\=(xyz(ax + ay + az))(3y+4z,3x,4x) A ⋅ ∇ M = ( x yz ( a x + a y + a z )) ∇ ( 3 x y + 4 z x ) = ( x yz ( a x + a y + a z )) ( 3 y + 4 z , 3 x , 4 x )
M ⋅ ∇ A = ( 3 x y + 4 z x ) ∇ ( x y z ( a x + a y + a z ) ) = a ( 3 x y + 4 z x ) ⋅ ( y z ( 2 x + y + z ) , x z ( x + 2 y + z ) , y x ( x + y + 2 z ) ) M \cdot∇A=(3xy + 4zx)∇(xyz(ax + ay + az))\\=a(3xy + 4zx)\cdot\\(yz(2x+y+z),xz(x+2y+z),yx(x+y+2z)) M ⋅ ∇ A = ( 3 x y + 4 z x ) ∇ ( x yz ( a x + a y + a z )) = a ( 3 x y + 4 z x ) ⋅ ( yz ( 2 x + y + z ) , x z ( x + 2 y + z ) , y x ( x + y + 2 z ))
∇ ( M A ) = ∇ ( x y z ( a x + a y + a z ) ( 3 x y + 4 z x ) ) = a ( 3 x y + 4 z x ) ⋅ ( y z ( 2 x + y + z ) , x z ( x + 2 y + z ) , y x ( x + y + 2 z ) ) + ( x y z ( a x + a y + a z ) ) ( 3 y + 4 z , 3 x , 4 x ) ∇(MA)=∇(xyz(ax + ay + az)(3xy + 4zx))=a(3xy + 4zx)\cdot\\(yz(2x+y+z),xz(x+2y+z),yx(x+y+2z))+\\(xyz(ax + ay + az))(3y+4z,3x,4x) ∇ ( M A ) = ∇ ( x yz ( a x + a y + a z ) ( 3 x y + 4 z x )) = a ( 3 x y + 4 z x ) ⋅ ( yz ( 2 x + y + z ) , x z ( x + 2 y + z ) , y x ( x + y + 2 z )) + ( x yz ( a x + a y + a z )) ( 3 y + 4 z , 3 x , 4 x )
Thus,
∇ ( M A ) = A ⋅ ∇ M + M ⋅ ∇ A ∇(MA)=A \cdot∇M+M \cdot∇A ∇ ( M A ) = A ⋅ ∇ M + M ⋅ ∇ A
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments