(a) "\\displaystyle \\oint_S \\bar{E}\\cdot \\bar{dS}=\\frac{q}{\\epsilon_0}" (Gauss law in SI)
"\\displaystyle \\oint_C \\bar{E}\\cdot \\bar{dl}=0" (conservative filed law)
(b) Due to cylindrical symmetry, the electric field will be pointed from the axis of symmetry to outside. Let's use Gauss law.
(i) inside the cylinder (r<a)
"\\displaystyle \\int_0^a \\rho(r) dV =q" (in volume "\\pi a^2L" )
"\\displaystyle E \\cdot 2\\pi r L = \\frac{1}{\\epsilon_0} \\int_0^r \\rho(r) dV = \\frac{1}{\\epsilon_0} q \\frac{\\pi r^2 L}{\\pi a^2 L}= \\frac{1}{\\epsilon_0} q \\frac{r^2}{a^2}"
"\\displaystyle E = \\frac{qr}{\\epsilon_0 \\, 2 \\pi L a^2}"
(ii) outside of the cylinder (r>a)
"\\displaystyle E \\cdot 2\\pi r L = \\frac{1}{\\epsilon_0} \\int_0^a \\rho(r) dV = \\frac{1}{\\epsilon_0} q"
"\\displaystyle E = \\frac{q}{\\epsilon_0 \\,2 \\pi L r}"
Comments
Leave a comment