As per the given question,
E=14πϵo∫ρvRR3dvE=\frac{1}{4\pi \epsilon_o}\int \frac{\rho_v R}{R^3}dvE=4πϵo1∫R3ρvRdv
=14πϵo∫4π3ρvR4π3R3dv=\frac{1}{4\pi \epsilon_o}\int \frac{\frac{4 \pi}{3}\rho_v R}{\frac{4 \pi}{3}R^3}dv=4πϵo1∫34πR334πρvRdv
=14πϵo∫4π3ρvRVdv=\frac{1}{4\pi \epsilon_o}\int \frac{\frac{4 \pi}{3}\rho_v R}{V}dv=4πϵo1∫V34πρvRdv
=14πϵo×4π3×∫ρvRVdv=\frac{1}{4\pi \epsilon_o}\times\frac{4 \pi}{3}\times\int \frac{\rho_v R}{V}dv=4πϵo1×34π×∫VρvRdv
=13ϵo×ρvR∫1Vdv=\frac{1}{3 \epsilon_o}\times \rho_v R\int \frac{1}{V}dv=3ϵo1×ρvR∫V1dv
=ρvR3ϵo×lnV+c=\frac{\rho_v R}{3 \epsilon_o}\times \ln V+c=3ϵoρvR×lnV+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment