Let,
"k=\\frac{1}{4\\pi\\epsilon_o}=9\\times 10^9" We know that
"F_{12}=k\\frac{q_1q_2}{d^2_{12}}"
(a).
b).
"Q_1=250\\mu C,Q_2=-150\\mu C,d_{12}=5m\\\\\n\\implies F_{12}=k\\frac{250\\times 150\\times 10^{-12}}{25}=15\\times 10^{-10}k=13.5N" c).
"Q_1=250\\mu C,Q_3=-200\\mu C,d_{13}=8m\\\\\n\\implies F_{13}=k\\frac{250\\times 200\\times 10^{-12}}{64}=7.81\\times 10^{-10}k=7.03N" d).
"Q_2=-150\\mu C,Q_3=-200\\mu C,d_{23}=m\\\\\n\\implies F_{23}=k\\frac{150\\times 200\\times 10^{-12}}{9}=30.0N" e).
From the free body diagram,
"F^{Q_1}_{net}=F_{12}+F_{13}=20.53N" acting along the direction away from "Q_1" to "Q_2"
f).
"F^{Q_2}_{net}=F_{12}+F_{23}=43.5N" along the direction left of "Q_2"
g).
"F^{Q_3}_{net}=F_{23}-F_{13}=22.97N" acting along the direction right of "Q_3"
Comments
Leave a comment