Answer to Question #282606 in Electric Circuits for Anonymous005

Question #282606

Calculate the total resistance of two, three, four and five 60 Ω resistors in parallel. What is the simple relationship for the total resistance of equal resistances in parallel?


1
Expert's answer
2021-12-28T09:38:14-0500

Total resistance of two 60 Ω resistors in parallel

1RT=1R1+1R2\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}

=160+160=\frac{1}{60}+\frac{1}{60}

=260=130=\frac{2}{60}=\frac{1}{30}

1RT=130\frac{1}{R_{T}}=\frac{1}{30}

RT=30Ω{R_{T}}=30Ω



Total resistance of three 60Ω resistors in parallel

1RT=1R1+1R2+1R3\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}

=160+160+160=\frac{1}{60}+\frac{1}{60}+\frac{1}{60}

=360=\frac{3}{60}

=120=\frac{1}{20}

1RT=120\frac{1}{R_{T}}=\frac{1}{20}

RT=20Ω{R_{T}}=20Ω 



Total resistance of four 60Ω resistors in parallel

1RT=1R1+1R2+1R3+1R4\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}

=160+160+160+160=\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}

=460=\frac{4}{60}

1RT=115\frac{1}{R_{T}}=\frac{1}{15}

RT=15ΩR_{T}=15Ω




Total resistance of five 60Ω resistors in parallel

1RT=1R1+1R2+1R3+1R4+1R5\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{5}}

=160+160+160+160+160=\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}

=560=\frac{5}{60}

1RT=112\frac{1}{R_{T}}=\frac{1}{12}

RT=12ΩR_{T}=12Ω



The simple relationship for the total resistance of equal resistances in parallel if given a 60Ω resistor is

RT=60ΩnR_{T}=\frac{60Ω}{n} for n=2,3,4,...n=2,3,4,...







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment