Calculate the total resistance of two, three, four and five 60 Ω resistors in parallel. What is the simple relationship for the total resistance of equal resistances in parallel?
Total resistance of two 60 Ω resistors in parallel
"\\frac{1}{R_{T}}=\\frac{1}{R_{1}}+\\frac{1}{R_{2}}"
"=\\frac{1}{60}+\\frac{1}{60}"
"=\\frac{2}{60}=\\frac{1}{30}"
"\\frac{1}{R_{T}}=\\frac{1}{30}"
"{R_{T}}=30\u03a9"
Total resistance of three 60Ω resistors in parallel
"\\frac{1}{R_{T}}=\\frac{1}{R_{1}}+\\frac{1}{R_{2}}+\\frac{1}{R_{3}}"
"=\\frac{1}{60}+\\frac{1}{60}+\\frac{1}{60}"
"=\\frac{3}{60}"
"=\\frac{1}{20}"
"\\frac{1}{R_{T}}=\\frac{1}{20}"
"{R_{T}}=20\u03a9"
Total resistance of four 60Ω resistors in parallel
"\\frac{1}{R_{T}}=\\frac{1}{R_{1}}+\\frac{1}{R_{2}}+\\frac{1}{R_{3}}+\\frac{1}{R_{4}}"
"=\\frac{1}{60}+\\frac{1}{60}+\\frac{1}{60}+\\frac{1}{60}"
"=\\frac{4}{60}"
"\\frac{1}{R_{T}}=\\frac{1}{15}"
"R_{T}=15\u03a9"
Total resistance of five 60Ω resistors in parallel
"\\frac{1}{R_{T}}=\\frac{1}{R_{1}}+\\frac{1}{R_{2}}+\\frac{1}{R_{3}}+\\frac{1}{R_{4}}+\\frac{1}{R_{5}}"
"=\\frac{1}{60}+\\frac{1}{60}+\\frac{1}{60}+\\frac{1}{60}+\\frac{1}{60}"
"=\\frac{5}{60}"
"\\frac{1}{R_{T}}=\\frac{1}{12}"
"R_{T}=12\u03a9"
The simple relationship for the total resistance of equal resistances in parallel if given a 60Ω resistor is
"R_{T}=\\frac{60\u03a9}{n}" for "n=2,3,4,..."
Comments
Leave a comment