Find the total resistance in each case:
a. A 16 Ω and an 18 Ω resistor connected in parallel
b. A 20 Ω, 10 Ω and 5 Ω resistor connected in parallel
Solution;
For resistors in parallel;
1RT=1R1+1R2+1R3+...+1Rn\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+...+\frac{1}{R_n}RT1=R11+R21+R31+...+Rn1
(a)
1RT=116+118=17144\frac{1}{R_T}=\frac{1}{16}+\frac{1}{18}=\frac{17}{144}RT1=161+181=14417
Therefore;
RT=14417=8.471ΩR_T=\frac{144}{17}=8.471\OmegaRT=17144=8.471Ω
(b)
1RT=120+110+15=720\frac{1}{R_T}=\frac{1}{20}+\frac{1}{10}+\frac{1}{5}=\frac{7}{20}RT1=201+101+51=207
Hence;
RT=2.857ΩR_T=2.857\OmegaRT=2.857Ω
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments