Question #203058

Derive expression for the electric field intensity due to an electric dipole at a point on the axis:

1- On the axial line 2- On equatorial line.

And also its cases.


1
Expert's answer
2021-06-07T06:01:01-0400

Answer:-

  1. For axial line


as we can see in the figure

electric field at P (EB) due to +q

EB=14πϵo.q(BP)2   along BP     =14πϵo.q(ra)2E_B=\frac{1}{4\pi \epsilon_o}.\frac{q}{(BP)^2} \ \ \ along \ BP\\ \ \ \ \ \ = \frac{1}{4\pi \epsilon_o}.\frac{q}{(r-a)^2}

Electric field at P due to -q (EA)

EA=14πϵo.q(AP)2   along PA     =14πϵo.q(r+a)2E_A=\frac{1}{4\pi \epsilon_o}.\frac{q}{(AP)^2} \ \ \ along \ PA\\ \ \ \ \ \ = \frac{1}{4\pi \epsilon_o}.\frac{q}{(r+a)^2}

Net field at P is given by

EP=EBEAE_P=E_B-E_A

=14πϵo[q(ra)2q(r+a)2]\frac{1}{4\pi\epsilon_o}[\frac{q}{(r-a)^2}-\frac{q}{(r+a)^2}]

simplifying , we get

Ep=2qa4πϵo.2r(r2a2)2E_p= \frac{2qa}{4\pi\epsilon_o}.\frac{2r}{(r^2-a^2)^2}


2.for equatorial line



as we see in the figure

EA=14πϵoq(AP)2      along PAEA=14πϵo.q(r2+a2)E_A=\frac{1}{4\pi\epsilon_o}\frac{q}{(AP)^2} \ \ \ \ \ \ along \ PA \\ E_A=\frac{1}{4\pi\epsilon_o}.\frac{q}{(r^2+a^2)} \\


EB=14πϵoq(BP)2      along PDEB=14πϵo.q(r2+a2)E_B=\frac{1}{4\pi\epsilon_o}\frac{q}{(BP)^2} \ \ \ \ \ \ along \ PD \\ E_B=\frac{1}{4\pi\epsilon_o}.\frac{q}{(r^2+a^2)} \\

the resultant intensity ios te vector sum of the intestines along PA and PB. EA and EB can be resolved into vertical and horizontal components . The vertical components of EA and EB cancel each other as they are equal and oppositely directed . It is the horizontal components which add up to give the resultant field .

EA=EB=14πϵo.q(r2+a2)2=14πϵo.q(r2+a2)E_A=E_B=\frac{1}{4\pi\epsilon_o}.\frac{q}{(\sqrt{r^2+a^2})^2}=\frac{1}{4\pi\epsilon_o}.\frac{q}{({r^2+a^2})}

E=2EAcos q

Substituting , cosθ=a(r2+a2)12cos\theta=\frac{a}{(r^2+a^2)^\frac{1}{2}} in the the above equation

we get

E=2Eacosθ=24πϵo.q(r2+a2).a(r2+a2)12E=2E_acos\theta=\frac{2}{4\pi\epsilon_o}.\frac{q}{(r^2+a^2)}.\frac{a}{(r^2+a^2)^{\frac{1}{2}}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS