Derive expression for the electric field intensity due to an electric dipole at a point on the axis:
1- On the axial line 2- On equatorial line.
And also its cases.
Answer:-
as we can see in the figure
electric field at P (EB) due to +q
"E_B=\\frac{1}{4\\pi \\epsilon_o}.\\frac{q}{(BP)^2} \\ \\ \\ along \\ BP\\\\\n\\ \\ \\ \\ \\ = \\frac{1}{4\\pi \\epsilon_o}.\\frac{q}{(r-a)^2}"
Electric field at P due to -q (EA)
"E_A=\\frac{1}{4\\pi \\epsilon_o}.\\frac{q}{(AP)^2} \\ \\ \\ along \\ PA\\\\\n\\ \\ \\ \\ \\ = \\frac{1}{4\\pi \\epsilon_o}.\\frac{q}{(r+a)^2}"
Net field at P is given by
"E_P=E_B-E_A"
="\\frac{1}{4\\pi\\epsilon_o}[\\frac{q}{(r-a)^2}-\\frac{q}{(r+a)^2}]"
simplifying , we get
"E_p= \\frac{2qa}{4\\pi\\epsilon_o}.\\frac{2r}{(r^2-a^2)^2}"
2.for equatorial line
as we see in the figure
"E_A=\\frac{1}{4\\pi\\epsilon_o}\\frac{q}{(AP)^2} \\ \\ \\ \\ \\ \\ along \\ PA \\\\\nE_A=\\frac{1}{4\\pi\\epsilon_o}.\\frac{q}{(r^2+a^2)} \\\\"
"E_B=\\frac{1}{4\\pi\\epsilon_o}\\frac{q}{(BP)^2} \\ \\ \\ \\ \\ \\ along \\ PD \\\\\nE_B=\\frac{1}{4\\pi\\epsilon_o}.\\frac{q}{(r^2+a^2)} \\\\"
the resultant intensity ios te vector sum of the intestines along PA and PB. EA and EB can be resolved into vertical and horizontal components . The vertical components of EA and EB cancel each other as they are equal and oppositely directed . It is the horizontal components which add up to give the resultant field .
"E_A=E_B=\\frac{1}{4\\pi\\epsilon_o}.\\frac{q}{(\\sqrt{r^2+a^2})^2}=\\frac{1}{4\\pi\\epsilon_o}.\\frac{q}{({r^2+a^2})}"
E=2EAcos q
Substituting , "cos\\theta=\\frac{a}{(r^2+a^2)^\\frac{1}{2}}" in the the above equation
we get
"E=2E_acos\\theta=\\frac{2}{4\\pi\\epsilon_o}.\\frac{q}{(r^2+a^2)}.\\frac{a}{(r^2+a^2)^{\\frac{1}{2}}}"
Comments
Leave a comment