In the manufacture of copper wire a 5 m length of thick circular rod, which has a resistance of
0.02 ohm is drawn out without change in volume until its new diameter is one-tenth of what it
was. Calculate the length of the drawn conductor and its resistance. [Ans: 200 Q]
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small V&=\\small \\pi r^2l=\\pi(\\frac{d}{2})^2.l\\\\\n&\\propto d^2l\\\\\\\\\n\\small V_1&\\propto\\small d^2.5m\\cdots(1)\\\\\n\\small V_2 &\\propto\\small (\\frac{d}{10})^2.L\\cdots(2) \\\\\\\\\n\\small 5d^2&=\\small \\frac{d^2.L}{10^2}\\\\\n\\small L&=\\small 500\\,m\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small R&=\\small \\frac{\\rho l}{A}=\\frac{\\rho l}{\\pi r^2}=\\frac{\\rho l}{\\pi\\frac{d^2}{4}}\\\\\n&\\propto\\small \\frac{l}{d^2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0.02\\Omega&\\propto\\frac{5}{d^2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small R&\\propto \\small \\frac{500}{(\\frac{d}{10})^2}\\propto \\frac{500\\times100}{d^2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{R}{0.02}&=\\small 100\\times100\\\\\n\\small R&=\\small \\bold{200\\Omega}\n\\end{aligned}"
Comments
Leave a comment