When the switch is open, the potential difference across the terminals of a battery is 20.0 V. When a current of 2.0 A flows, the potential difference across the battery drops to 16 V. (a) If this battery consists of two identical cells in series, what is the electromotive force of each cell? (b) If this battery consists of two identical cells in series, what is the internal resistance of each cell? (c) If this battery consists of two identical cells in parallel, what is the electromotive force of each cell? (d) If this battery consists of two identical cells in parallel, what is the internal resistance of each cell?
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small V&=\\small E\\pm ir\\begin{cases}\n\\small E+ir: \\text{during being charged}\\\\\n\\small E-ir: \\text{during normal operation}\n\\end{cases}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 16\\,V&=\\small20\\,V-2A\\times r\\\\\n\\small r&=\\small 2\\, \\Omega\n\\end{aligned}"
the total equivalent resistance of the battery pack is "\\small 2\\Omega" and the total electromotive force is "\\small 20\\,V".
"\\qquad\\qquad\n\\begin{aligned}\n\\small 20V&=\\small E_1+E_2\\\\\n\\small E_1&=\\small E_2\\\\\n\\small 2E&=\\small 20\\\\\n\\small E&=\\small \\bold{10V}\\\\\\\\\n\n\\small 2\\Omega &=\\small r_1+r_2\\\\\n\\small r_1&=\\small r_2\\\\\n\\small 2r&=\\small 2\\\\\n\\small r&=\\small \\bold{1 \\Omega}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{1}{2\\Omega}&=\\small \\frac{1}{r_1}+\\frac{1}{r_2}\\\\\n\\small r_1 &=\\small r_2\\\\\n\\small \\frac{2}{r}&=\\small \\frac{1}{2}\\\\\n\\small r&=\\small \\bold{4\\,\\Omega}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{20V}{2\\Omega}&=\\small \\frac{E_1}{4\\Omega}+\\frac{E_2}{4\\Omega}\\\\\n\\small E_1&=\\small E_2\\\\\n\\small 10&=\\small \\frac{2E}{4}\\\\\n\\small E&=\\small \\bold{20\\,V}\n\\end{aligned}"
Comments
Leave a comment