Question #182210

an e.m.f. represented by e=100 sin 100pi t is impressed across a circuit consisting of 40 ohms resistor in series with a 40microF capacitor and a 0.25 H indicator. Determine the r.m.s value of the current the power supplied the power factor.


1
Expert's answer
2021-04-19T17:10:06-0400

Resistance, RR = 4040 Ω\Omega

Inductance, L=0.25 HL=0.25 \space H

Capacitance, C=40 μF=40×106 FC=40\space\mu F=40\times10^{-6}\space F

ω=100π\omega=100\pi

XL=ωLX_L=\omega L =100π×0.25=78.53=100\pi\times0.25=78.53

XC=1ωC=1100π×40×106=79.57X_C=\dfrac{1}{\omega C}=\dfrac{1}{100\pi\times40\times10^{-6}}=79.57

Impedance, Z=R2+(XLXC)2=40.01 ΩZ=\sqrt{R^2+(X_L-X_C)^2}=40.01\space\Omega

Power factor, cosϕ=RZ=0.99cos\phi=\dfrac{R}{Z}=0.99


VRMS=VM2=1002=50 VV_{RMS}=\dfrac{V_M}{2}=\dfrac{100}{2}=50\space V

RMS value of current, IRMS=VRMSZ=5040.01=1.24 AI_{RMS}=\dfrac{V_{RMS}}{Z}=\dfrac{50}{40.01}=1.24\space A

Power Supplied, P=IRMS2Zcosϕ=60.90 W=I_{RMS}^2Zcos\phi=60.90\space W


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS