an e.m.f. represented by e=100 sin 100pi t is impressed across a circuit consisting of 40 ohms resistor in series with a 40microF capacitor and a 0.25 H indicator. Determine the r.m.s value of the current the power supplied the power factor.
Resistance, "R" = "40" "\\Omega"
Inductance, "L=0.25 \\space H"
Capacitance, "C=40\\space\\mu F=40\\times10^{-6}\\space F"
"\\omega=100\\pi"
"X_L=\\omega L" "=100\\pi\\times0.25=78.53"
"X_C=\\dfrac{1}{\\omega C}=\\dfrac{1}{100\\pi\\times40\\times10^{-6}}=79.57"
Impedance, "Z=\\sqrt{R^2+(X_L-X_C)^2}=40.01\\space\\Omega"
Power factor, "cos\\phi=\\dfrac{R}{Z}=0.99"
"V_{RMS}=\\dfrac{V_M}{2}=\\dfrac{100}{2}=50\\space V"
RMS value of current, "I_{RMS}=\\dfrac{V_{RMS}}{Z}=\\dfrac{50}{40.01}=1.24\\space A"
Power Supplied, P"=I_{RMS}^2Zcos\\phi=60.90\\space W"
Comments
Leave a comment