Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small E &= \\small \\frac{kq}{r^2}=\\frac{kq}{x^2+y^2}=\\frac{kq}{x^2}+\\frac{kq}{y^2}\n\\end{aligned}"
"\\qquad\\qquad\nE_1= \\begin{cases}\n\\begin{aligned}\n\\small y_1=\\frac{k\\,40C}{(10-8)^2}=\\frac{-40k}{4} :\\text{vertical}\n\\end{aligned}\\\\\n\\begin{aligned}\n\\small x_1= \\frac{k\\,40C}{(3)^2}=\\frac{+40k}{9}: \\text{horizontal}\n\\end{aligned}\\\\\n\\end{cases}"
"\\qquad\\qquad\nE_2= \\begin{cases}\n\\begin{aligned}\n\\small y_2=\\frac{k\\,40C}{(5-8)^2}=\\frac{-40k}{9} :\\text{vertical}\n\\end{aligned}\\\\\n\\begin{aligned}\n\\small x_2= \\frac{k\\,40C}{(3)^2}=\\frac{-40k}{9}: \\text{horizontal}\n\\end{aligned}\\\\\n\\end{cases}"
"\\qquad\\qquad\nE_3= \\begin{cases}\n\\begin{aligned}\n\\small y_3=\\frac{k\\,10C}{(2-8)^2}=\\frac{+10k}{36} :\\text{vertical}\n\\end{aligned}\\\\\n\\begin{aligned}\n\\small x_3= \\frac{k\\,10C}{(3)^2}=\\frac{+10k}{9}: \\text{horizontal}\n\\end{aligned}\\\\\n\\end{cases}"
"\\qquad\\qquad\nE_{net}= \\begin{cases}\n\\begin{aligned}\n\\small Y_{net}=\\frac{(-40k)}{4}+ \\frac{(-40k)}{9}+\\frac{10k}{36}=\\frac{(-85k)}{6}:\\text{verticle}\n\\end{aligned}\\\\\n\\begin{aligned}\n\\small X_{net}= \\frac{40k}{9}+\\frac{(-40)k}{9}+\\frac{10k}{9}=\\frac{10k}{9}: \\text{horizontal}\n\\end{aligned}\\\\\n\\end{cases}" or "\\small E_{net}=\\frac{-85k}{6}i+\\frac{10k}{9}j"
"\\qquad\\qquad\n\\begin{aligned}\n\\small |E_{net}| &= \\small \\sqrt{(\\frac{85k}{6})^2+(\\frac{10k}{9})^2}\\\\\n&= \\small 14.210k\\\\\n&= \\small 14.210\\times (8.988\\times 10^9Nm^2\/C^2)\\\\\n&= \\small \\bold{1.277\\times 10^{11} N\/C}\n\\end{aligned}"
Comments
Leave a comment