Answer to Question #144251 in Electric Circuits for gsk

Question #144251
it shows the charge distribution within a thundercloud.There is a charge of 40 C at a height of 10 km,−40 C at 5 km,and 10 C at 2 km. Considering these charges to be pointlike,find the net electric field produced at a height of 8 km and ahorizontal distance of 3 km.
1
Expert's answer
2020-11-16T07:44:59-0500

Explanations & Calculations


  • Electric field is the electric force generated on a positive test unit charge (+1C) by the other charges.
  • And the electric field (E) at a point at a distance r by a charge q is E=kqr2\small E = \large \frac{kq}{r^2} (NC-1)
  • If this r could be written by Pythagoras relationship as r2=x2+y2\small r^2=x^2+y^2 then,

E=kqr2=kqx2+y2=kqx2+kqy2\qquad\qquad \begin{aligned} \small E &= \small \frac{kq}{r^2}=\frac{kq}{x^2+y^2}=\frac{kq}{x^2}+\frac{kq}{y^2} \end{aligned}

  • E could be written in its orthogonal components in such a situation.
  • This is the easiest way to find the net electric field at the given point as the point is shifted right from the main charge distribution & the distances from each charge to the given point follow Pythagoras pattern.


  • Sign convention: Downward & the leftward directions are negative & the upward & the rightward are positive.


  • Field due to the +40C charge

E1={y1=k40C(108)2=40k4:verticalx1=k40C(3)2=+40k9:horizontal\qquad\qquad E_1= \begin{cases} \begin{aligned} \small y_1=\frac{k\,40C}{(10-8)^2}=\frac{-40k}{4} :\text{vertical} \end{aligned}\\ \begin{aligned} \small x_1= \frac{k\,40C}{(3)^2}=\frac{+40k}{9}: \text{horizontal} \end{aligned}\\ \end{cases}

  • Field due to the -40C charge

E2={y2=k40C(58)2=40k9:verticalx2=k40C(3)2=40k9:horizontal\qquad\qquad E_2= \begin{cases} \begin{aligned} \small y_2=\frac{k\,40C}{(5-8)^2}=\frac{-40k}{9} :\text{vertical} \end{aligned}\\ \begin{aligned} \small x_2= \frac{k\,40C}{(3)^2}=\frac{-40k}{9}: \text{horizontal} \end{aligned}\\ \end{cases}


  • Field due to the +10C charge

E3={y3=k10C(28)2=+10k36:verticalx3=k10C(3)2=+10k9:horizontal\qquad\qquad E_3= \begin{cases} \begin{aligned} \small y_3=\frac{k\,10C}{(2-8)^2}=\frac{+10k}{36} :\text{vertical} \end{aligned}\\ \begin{aligned} \small x_3= \frac{k\,10C}{(3)^2}=\frac{+10k}{9}: \text{horizontal} \end{aligned}\\ \end{cases}


  • Then the net force can be calculated by summing up both the vertical & horizontal components. Therefore, the net force in component form is

Enet={Ynet=(40k)4+(40k)9+10k36=(85k)6:verticleXnet=40k9+(40)k9+10k9=10k9:horizontal\qquad\qquad E_{net}= \begin{cases} \begin{aligned} \small Y_{net}=\frac{(-40k)}{4}+ \frac{(-40k)}{9}+\frac{10k}{36}=\frac{(-85k)}{6}:\text{verticle} \end{aligned}\\ \begin{aligned} \small X_{net}= \frac{40k}{9}+\frac{(-40)k}{9}+\frac{10k}{9}=\frac{10k}{9}: \text{horizontal} \end{aligned}\\ \end{cases} or Enet=85k6i+10k9j\small E_{net}=\frac{-85k}{6}i+\frac{10k}{9}j

Enet=(85k6)2+(10k9)2=14.210k=14.210×(8.988×109Nm2/C2)=1.277×1011N/C\qquad\qquad \begin{aligned} \small |E_{net}| &= \small \sqrt{(\frac{85k}{6})^2+(\frac{10k}{9})^2}\\ &= \small 14.210k\\ &= \small 14.210\times (8.988\times 10^9Nm^2/C^2)\\ &= \small \bold{1.277\times 10^{11} N/C} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment