A) since the energy of level "n" in the stationary state of hydrogen atom is defined as "E_n=\\frac{m\\times e^4}{32\\times \\pi^2\\times\\varepsilon_0^2\\times \\hbar^2 } \\times \\frac {1}{n^2}" , where "m" is the electron mass, "e" the electron charge, "\\varepsilon_0" – electric constant, "\\hbar" Planck's constant Dirac.
Express "n" and you get "n=\\sqrt{\\frac{m\\times e^4}{32\\times \\pi^2\\times\\varepsilon_0^2\\times h^2 } \\times \\frac {1}{ E_n }}=" "\\sqrt{\\frac{9.1\\times 10^{-31}\\times (1.6\\times 10^{-19})^4}{32\\times \\pi^2\\times(8.85\\times10^{-12})^2\\times (1.05\\times 10{-34})^2 } \\times \\frac {1}{ 2.28\\times 1.6\\times 10^{-19}}}\\approx2" .
B) Since the kinetic energy is "E=\\frac{m\\times v^2}{2}" ,hence "v=\\sqrt{\\frac{2\\times 2.28\\times 1.6\\times 10^{-19}}{9.1\\times 10^{-31}}}=8.95\\times 10^5" m/s.
Comments
Leave a comment