Design an adder circuit using op-amp to satisfy following equation:
-Vo = V1 + 3 V2 + 2 V3 + 2V4 + 4V5
The supply voltage of the op-amp is +/- 13V and output saturation voltage is +/- 12 V.
The circuit should always operate in its linear range. What are the minimum- maximum voltage values of V1, V2, V3, V4 and V5 when only one of them is connected to the input at a given time (i.e. other input voltages are zero)? What is the value of maximum voltage Vi if V1 = V2 = V3 = V4 = V5 = Vi ?)
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small i_1 &= \\small \\frac{V_1-V_p}{R_1} = \\frac{V_1 -0}{R =} = \\frac{V_1}{R}\\\\\n\\small i_2 &= \\small \\frac{V_2}{R\/3} = \\frac{3V_2}{R} \\\\\n\\small i_3 &= \\small \\frac{V_3}{R\/2} = \\frac{2V_3}{R}\\\\\n\\small i_4 &= \\small \\frac{2V_4}{R}\\\\\n\\small i_5 &= \\small \\frac{4V_5}{R}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small i &= \\small \\frac{V_p-V_o}{R}= \\frac{0-V_o}{R}=\\frac{-V_o}{R} \\cdots\\cdots(2)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{-V_o}{R}&= \\small \\frac{V_1}{R} + \\frac{3V_2}{R} +\\frac{2V_3}{R} + \\frac{2V_4}{R} +\\frac{4V_5}{R}\\\\\n\\small \\bold{-V_o} &= \\small \\bold{V_1 +3V_2 +2V_3 +2V_4 +4V_5}\n\\end{aligned}"
1). Only V1
"\\qquad\\qquad\n\\begin{aligned}\n\\small V_1 &= \\small -V_o \\cdots(\\text{gain = 1})\\\\\n\\small V_{1-min} & =\\small -(12V) = -12V\\\\\n\\small V_{1-max} & =\\small -(-12V) = 12V\n\\end{aligned}"
2) Only V2
"\\qquad\\qquad\n\\begin{aligned}\n\\small V_2 &= \\small \\frac{-V_o}{3}\\cdots(\\text{gain = 3})\\\\\n\\small V_{2-min}&= \\small \\frac{-(12)}{3} = -4V\\\\\n\\small V_{2-max}&= \\small \\frac{-(-12)}{3} = 4V\n\\end{aligned}"
3) Only V3
"\\qquad\\qquad\n\\begin{aligned}\n\\small V_3 &= \\small \\frac{-V_o}{2} \\\\\n\\small V_{3-min} &= \\small \\frac{-(12)}{2} = -6V\\\\\n\\small V_{3-min} &= \\small \\frac{-(-12)}{2} = 6V\n\\end{aligned}"
4) Only V4
5) Only V5
"\\qquad\\qquad\n\\begin{aligned}\n\\small V_5 &= \\small \\frac{-V_o}{4}\\\\\n\\small V_{5-min}&= \\small \\frac{-(12)}{4} = -3V\\\\\n\\small V_{5-max} &= \\small \\frac{-(-12)}{4}= 3V\n\\end{aligned}"
6) When all voltages equal to Vi
"\\qquad\\qquad\n\\begin{aligned}\n\\small -V_o &=\\small 12V_i\\\\\n\\small V_{i-max} &= \\small \\frac{-V_{o-min}}{12}\\\\\n&= \\small \\frac{-(-12V)}{12}\\\\\n&= \\small \\bold{1V}\n\\end{aligned}"
Note: double arrows are to show the alternating current.
Comments
Leave a comment