Question #124908

Design an adder circuit using op-amp to satisfy following equation:

-Vo = V1 + 3 V2 + 2 V3 + 2V4 + 4V5

The supply voltage of the op-amp is +/- 13V and output saturation voltage is +/- 12 V.

The circuit should always operate in its linear range. What are the minimum- maximum voltage values of V1, V2, V3, V4 and V5 when only one of them is connected to the input at a given time (i.e. other input voltages are zero)? What is the value of maximum voltage Vi if V1 = V2 = V3 = V4 = V5 = Vi ?)


1
Expert's answer
2020-07-03T10:05:08-0400

Explanations & Calculations




  • Refer to the figure attached


  • Feed back resistor is (which connects the inverting terminal to the output) is also the same value R.
  • VpV_p is zero as the non inverting input is grounded.
  • So considering all the inputs, currents through each could be found as,

i1=V1VpR1=V10R==V1Ri2=V2R/3=3V2Ri3=V3R/2=2V3Ri4=2V4Ri5=4V5R\qquad\qquad \begin{aligned} \small i_1 &= \small \frac{V_1-V_p}{R_1} = \frac{V_1 -0}{R =} = \frac{V_1}{R}\\ \small i_2 &= \small \frac{V_2}{R/3} = \frac{3V_2}{R} \\ \small i_3 &= \small \frac{V_3}{R/2} = \frac{2V_3}{R}\\ \small i_4 &= \small \frac{2V_4}{R}\\ \small i_5 &= \small \frac{4V_5}{R} \end{aligned}

  • Now all these currents pass through the feed back resistor —R— to the output circuit. Therefor, i=i1+i2+i3+i4+i5(1)i = i_1+i_2+i_3+i_4+i_5 \cdots\cdots(1)


  • Considering the feedback resistor (V = iR),

i=VpVoR=0VoR=VoR(2)\qquad\qquad \begin{aligned} \small i &= \small \frac{V_p-V_o}{R}= \frac{0-V_o}{R}=\frac{-V_o}{R} \cdots\cdots(2) \end{aligned}

  • By (1) = (2),

VoR=V1R+3V2R+2V3R+2V4R+4V5RVo=V1+3V2+2V3+2V4+4V5\qquad\qquad \begin{aligned} \small \frac{-V_o}{R}&= \small \frac{V_1}{R} + \frac{3V_2}{R} +\frac{2V_3}{R} + \frac{2V_4}{R} +\frac{4V_5}{R}\\ \small \bold{-V_o} &= \small \bold{V_1 +3V_2 +2V_3 +2V_4 +4V_5} \end{aligned}


1). Only V1

V1=Vo(gain = 1)V1min=(12V)=12VV1max=(12V)=12V\qquad\qquad \begin{aligned} \small V_1 &= \small -V_o \cdots(\text{gain = 1})\\ \small V_{1-min} & =\small -(12V) = -12V\\ \small V_{1-max} & =\small -(-12V) = 12V \end{aligned}

2) Only V2

V2=Vo3(gain = 3)V2min=(12)3=4VV2max=(12)3=4V\qquad\qquad \begin{aligned} \small V_2 &= \small \frac{-V_o}{3}\cdots(\text{gain = 3})\\ \small V_{2-min}&= \small \frac{-(12)}{3} = -4V\\ \small V_{2-max}&= \small \frac{-(-12)}{3} = 4V \end{aligned}

3) Only V3

V3=Vo2V3min=(12)2=6VV3min=(12)2=6V\qquad\qquad \begin{aligned} \small V_3 &= \small \frac{-V_o}{2} \\ \small V_{3-min} &= \small \frac{-(12)}{2} = -6V\\ \small V_{3-min} &= \small \frac{-(-12)}{2} = 6V \end{aligned}

4) Only V4

  • Same results as "only V3"


5) Only V5

V5=Vo4V5min=(12)4=3VV5max=(12)4=3V\qquad\qquad \begin{aligned} \small V_5 &= \small \frac{-V_o}{4}\\ \small V_{5-min}&= \small \frac{-(12)}{4} = -3V\\ \small V_{5-max} &= \small \frac{-(-12)}{4}= 3V \end{aligned}


6) When all voltages equal to Vi

Vo=12ViVimax=Vomin12=(12V)12=1V\qquad\qquad \begin{aligned} \small -V_o &=\small 12V_i\\ \small V_{i-max} &= \small \frac{-V_{o-min}}{12}\\ &= \small \frac{-(-12V)}{12}\\ &= \small \bold{1V} \end{aligned}


Note: double arrows are to show the alternating current.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS