As per phaser diagram, For circuit to be resonance, Impedance (resistance) of circuit must be minimum.
So,
I C = I L s i n θ I_C = I_Lsin\theta I C = I L s in θ
simply putting value of I C , I L I_C , I_L I C , I L and s i n θ sin\theta s in θ
V X C = V Z L ( X L Z L ) \frac{V}{X_C} = \frac{V}{Z_L}(\frac{X_L}{Z_L}) X C V = Z L V ( Z L X L )
X C X L = Z L 2 X_CX_L = Z_L^2 X C X L = Z L 2 . . . . . . (i)
since, X C = 1 ω C X_C = \frac{1}{\omega C} X C = ω C 1 , X L = ω L X_L = {\omega L} X L = ω L and Z L 2 = R 2 + X L 2 Z_L^2 = R^2 + X_L^2 Z L 2 = R 2 + X L 2
then equation (i) will be,
ω L ω C = R 2 + ( ω L ) 2 \frac{\omega L}{\omega C} = R^2 + (\omega L)^2 ω C ω L = R 2 + ( ω L ) 2
( ω ) 2 = ( 2 π f r ) 2 = [ 1 L C − R L 2 ] (\omega)^2 = (2\pi f_r)^2= [\frac{1}{LC} - {\frac{R}{L^2}}] ( ω ) 2 = ( 2 π f r ) 2 = [ L C 1 − L 2 R ]
f r = ( 1 2 π ) 1 L C − R L 2 f_r =(\frac{1}{2\pi}) \sqrt{\frac{1}{LC} - {\frac{R}{L^2}}} f r = ( 2 π 1 ) L C 1 − L 2 R is the resonance frequency.
Again,
V Z f = V Z L ( R Z L ) \frac {V}{Z_f} = \frac{V}{Z_L}(\frac{R}{Z_L}) Z f V = Z L V ( Z L R ) where Z r Z_r Z r is the total effective impedance of the circuit at resonance.
Z f = Z L 2 R Z_f = {\frac{Z_L^2}{R}} Z f = R Z L 2
using (i) again here,
Z f = X C X L R = ω L R ω C = L R C Z_f = \frac{X_CX_L}{R} = \frac{\omega L}{R \omega C} = \frac{L}{RC} Z f = R X C X L = R ω C ω L = RC L
Now using these formulas,
Impedance of the circuit will be,
Z f = L L C = 2 ∗ 1 0 − 3 15 ∗ 0.01 ∗ 1 0 − 6 = 13.33 ∗ 1 0 3 Ω Z_f = \frac{L}{LC} = \frac{2*10^-3}{15*0.01*10^-6} = 13.33*10^3 \Omega Z f = L C L = 15 ∗ 0.01 ∗ 1 0 − 6 2 ∗ 1 0 − 3 = 13.33 ∗ 1 0 3 Ω
For current, use ohm's law,
I = V Z f = V C R L I = \frac{V}{Z_f} = \frac{VCR}{L} I = Z f V = L V CR . . . . . . . (ii)
If V = 1V then current will be, using equation(ii) putting value of Z f Z_f Z f
I = 0.075 ∗ 1 0 − 3 A I = 0.075*10^{-3} A I = 0.075 ∗ 1 0 − 3 A
Comments