The Gauss' theorem is "\\iint_S(A\\sdot n)ds=\\iiint_V(\\nabla \\sdot A)dv" as "\\nabla\\sdot A=3(x^2+y^2+z^2)" then
"\\iiint_V(\\nabla\\sdot A)dv=3\\sdot4\\int_{0}^{\\pi\/2}d\\phi\\int_{0}^{\\pi\/2}\\sin\\theta d\\theta\\int_{0}^{A}r^2dr="
"=12\\pi\/2(-\\cos\\theta)|_0^{\\pi\/2}A^3\/3=2\\pi A^3"
Comments
Leave a comment