The Gauss' theorem is ∬S(A⋅n)ds=∭V(∇⋅A)dv\iint_S(A\sdot n)ds=\iiint_V(\nabla \sdot A)dv∬S(A⋅n)ds=∭V(∇⋅A)dv as ∇⋅A=3(x2+y2+z2)\nabla\sdot A=3(x^2+y^2+z^2)∇⋅A=3(x2+y2+z2) then
∭V(∇⋅A)dv=3⋅4∫0π/2dϕ∫0π/2sinθdθ∫0Ar2dr=\iiint_V(\nabla\sdot A)dv=3\sdot4\int_{0}^{\pi/2}d\phi\int_{0}^{\pi/2}\sin\theta d\theta\int_{0}^{A}r^2dr=∭V(∇⋅A)dv=3⋅4∫0π/2dϕ∫0π/2sinθdθ∫0Ar2dr=
=12π/2(−cosθ)∣0π/2A3/3=2πA3=12\pi/2(-\cos\theta)|_0^{\pi/2}A^3/3=2\pi A^3=12π/2(−cosθ)∣0π/2A3/3=2πA3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments