With reference to the image :
For the given circuit,τ=LR1=L15=12 ⟹ L=7.5\tau=\frac{L}{R_1}=\frac{L}{15}=\frac{1}{2}\implies L=7.5τ=R1L=15L=21⟹L=7.5
And at t=0,W=12Lio2=2.22 J ⟹ io=4.44L=t=0,W=\frac{1}{2}Li_o^2=2.22\ J\implies i_o=\sqrt{\frac{4.44}{L}}=t=0,W=21Lio2=2.22 J⟹io=L4.44= 4.447.5=0.77A\sqrt{\frac{4.44}{7.5}}=0.77A7.54.44=0.77A
At t=0,t=0,t=0, inductance offer infinite resistance,So,no current pass through it.
io=ER2 ⟹ R2=Eio=100.77=13Ωi_o=\frac{E}{R_2}\implies R_2=\frac{E}{i_o}=\frac{10}{0.77}=13 \Omegaio=R2E⟹R2=ioE=0.7710=13Ω
And i=io(1−et/τ)=0.77(1−e2t)i=i_o(1-e^{t/\tau})=0.77(1-e^{2t})i=io(1−et/τ)=0.77(1−e2t)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments