Case1:
Acceleration is constant:
a(t) = const.=w=wt0
v(t)= ∫ a(t)dt=∫ wt0dt=wt+c
at,t=0 ,v(t)=0
Thus
0=c
or c=0
Thus
v(t)=wt
Now, Again
y(t)=∫v(t)dt
y(t)=∫wtdt
y(t)=wt2/2+c
y(t)=wt2/2+c
at,t=0
y(t)=0
Thus
0=c
or c=0
Thus,
y(t)=wt2/2
Case II:
Acceleration is not constant:
a(t) = bt
v(t)= ∫ a(t)dt=∫ btdt=bt2/2+c
at,t=0,v(t)=0
Thus
0=c
or c=0
v(t)=bt2/2
Now
y(t)=∫v(t)dt
y(t)=∫bt2/2dt
y(t)=bt3/6+c
at,t=0
y(t)=0
Thus
0=c
or c=0
Thus,
y(t)=bt3/6
Comments
Leave a comment