total mechanical energy at point A is equal to
"E_A=m\\cdot g \\cdot h"
total mechanical energy at point "A^{'}" is equal to
"E_{A^{'}}=m\\cdot g \\cdot x+K_{A^{'}}=m\\cdot g \\cdot x+0.6\\cdot m\\cdot g \\cdot h"
full mechanical energy is stored, then we write
"E_A=E_{A^{'}}"
"m\\cdot g \\cdot h=m\\cdot g \\cdot x+0.6\\cdot m\\cdot g \\cdot h"
"h= x+0.6\\cdot h"
where from
"x= h-0.6\\cdot h=2-0.6\\cdot 2=1.2=0.8(m)"
from the likeness of triangles
"OAB end OA^{'}B^{'}" we write
"\\frac{AB}{A^{'}B^{'} }=\\frac{OA}{OB^{'} }"
or
"\\frac{h}{x}=\\frac{5}{L }"
where from
"L=5\\cdot\\frac{x}{h}=5\\cdot\\frac{0.8}{2}=2(m)"
The desired point is located "x=0.8(m)" , "L=2(m)" .
Answer:
At 2 mfrom the bottom of the ramp.
Comments
Leave a comment