*Conservative force and its potential energy function Consider the components of a position dependent force F(r): Fx = ayz + bx + c Fy = axz + bz Fz = axy + by. (a) Show that this force is conservative. (b) Find its corresponding potential energy function, V (r)
Given:
"F_x=ayz + bx + c \\\\\nF_y=axz + bz\\\\\nF_z=axy + by"
(a) For conservative field
"\\bf curl\\: F=0"In our case
"\\bf curl\\: F=\\begin{vmatrix}\n \\hat i & \\hat j & \\hat k \\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z}\\\\\nF_x&F_y&F_z\n\\end{vmatrix}""=\\begin{vmatrix}\n \\hat i & \\hat j & \\hat k \\\\\n \\frac{\\partial}{\\partial x} & \\frac{\\partial}{\\partial y} & \\frac{\\partial}{\\partial z}\\\\\nayz + bx + c&axz + bz&axy + by\n\\end{vmatrix}"
"={\\hat i}(ax+b-ax-b)+{\\hat j}(ay-ay)+{\\hat k}(az-az)\\\\=\\bf 0"
(b) The potential energy function satisfies equation
"{\\bf F}=-\\nabla V"So
"V(x,y,z)=-(axyz+b(x^2+y^2+z^2)\/2+cx)"
Comments
Leave a comment