Answer to Question #224670 in Classical Mechanics for Trh

Question #224670
A 4.0kg object has a velocity of 3.0i m/s at one instant. Eight seconds later, its velocity is (8.0i+10.0j) m/s . Assuming the object was subject to a constant net force, find (a) the components of the force and (b) its magnitude.
1
Expert's answer
2021-08-10T12:16:04-0400

The given information is

  • The initial velocity is Vi=3.0  i  m/sV_{i}=3.0\;i\;\text{m}/\text{s}
  • The final velocity is Vf=(8.0  i+10.0  j)  m/sV_{f}=(8.0\;i+10.0\;j)\;\text{m}/\text{s}
  • The time it takes to change velocity is t=8  st=8\;\text{s}
  • The mass of the object is m=4.0  Kgm=4.0\;\text{Kg}

Part A


The acceleration is given by.

a=VfVita=\dfrac{V_{f}-V_{i}}{t}

where,

ViV_{i} Is the initial velocity.

VfV_{f} Is the final velocity.

tt Is the time.


Evaluating numerically.

a=VfVit.a=(8.0  i  +10.0  j)  m/s3.0  i  m/s8.0  s.a=8.0  i  m/s+10.0  j  m/s3.0  i  m/s8.0  s.a=5.0  i  m/s+10.0  j  m/s8.0  s.a=(5.0  i+10.0  j)  m/s8.0  s.a=(0.625  i+1.25  j)  m/s2a=\dfrac{V_{f}-V_{i}}{t}\\ .\\ a=\dfrac{(8.0\;i\;+10.0\;j)\;\text{m}/\text{s}-3.0\;i\;\text{m}/\text{s}}{8.0\;\text{s}}\\ .\\ a=\dfrac{8.0\;i\;\text{m}/\text{s}+10.0\;j\;\text{m}/\text{s}-3.0\;i\;\text{m}/\text{s}}{8.0\;\text{s}}\\ .\\ a=\dfrac{5.0\;i\;\text{m}/\text{s}+10.0\;j\;\text{m}/\text{s}}{8.0\;\text{s}}\\ .\\ a=\dfrac{(5.0\;i+10.0\;j)\;\text{m}/\text{s}}{8.0\;\text{s}}\\ .\\ a=(0.625\;i+1.25\;j)\;\text{m}/\text{s}^{2}\\


The force on the object is given by.

F=m  aF=m\;a\\


where.

mm Is the mass.

aa is the acceleration.


Evaluating numerically.

F=m  aF=4.0  Kg×(0.625  i+1.25  j)  m/s2F=(2.5  i+5  j)  NF=m\;a\\ F=4.0\;\text{Kg}\times (0.625\;i+1.25\;j)\;\text{m}/\text{s}^{2}\\ F=(2.5\;i+5\;j)\;\text{N}


Answer (a)

The force on the object is 

The horizontal component. Fx=2.5  N\displaystyle \color{red}{\boxed{F_{x}=2.5\;\text{N}}}

The vertical component. Fy=5  N\displaystyle \color{red}{\boxed{F_{y}=5\;\text{N}}}


Part B


The magnitude of the force is given by.

F=Fx2+Fy2F=\sqrt{ F_{x}^{2}+F_{y}^{2}}


Evaluating numerically. 

F=Fx2+Fy2F=(2.5  N)2+(5  N)2F=31.25  N2F=5.6  NF=\sqrt{ F_{x}^{2}+F_{y}^{2}}\\ F=\sqrt{ (2.5\;\text{N})^{2}+(5\;\text{N})^{2}}\\ F=\sqrt{ 31.25\;\text{N}^{2} }\\ F=5.6\;\text{N}


Answer B

The magnitude of the force on the object is F=5.6  N\displaystyle \color{red}{\boxed{F=5.6\;\text{N}}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Joshua
18.04.24, 15:46

Wow amazing solution,

Leave a comment