The given information is
The initial velocity is V i = 3.0 i m / s V_{i}=3.0\;i\;\text{m}/\text{s} V i = 3.0 i m / s The final velocity is V f = ( 8.0 i + 10.0 j ) m / s V_{f}=(8.0\;i+10.0\;j)\;\text{m}/\text{s} V f = ( 8.0 i + 10.0 j ) m / s The time it takes to change velocity is t = 8 s t=8\;\text{s} t = 8 s The mass of the object is m = 4.0 Kg m=4.0\;\text{Kg} m = 4.0 Kg Part A
The acceleration is given by.
a = V f − V i t a=\dfrac{V_{f}-V_{i}}{t} a = t V f − V i
where,
V i V_{i} V i Is the initial velocity.
V f V_{f} V f Is the final velocity.
t t t Is the time.
Evaluating numerically.
a = V f − V i t . a = ( 8.0 i + 10.0 j ) m / s − 3.0 i m / s 8.0 s . a = 8.0 i m / s + 10.0 j m / s − 3.0 i m / s 8.0 s . a = 5.0 i m / s + 10.0 j m / s 8.0 s . a = ( 5.0 i + 10.0 j ) m / s 8.0 s . a = ( 0.625 i + 1.25 j ) m / s 2 a=\dfrac{V_{f}-V_{i}}{t}\\
.\\
a=\dfrac{(8.0\;i\;+10.0\;j)\;\text{m}/\text{s}-3.0\;i\;\text{m}/\text{s}}{8.0\;\text{s}}\\
.\\
a=\dfrac{8.0\;i\;\text{m}/\text{s}+10.0\;j\;\text{m}/\text{s}-3.0\;i\;\text{m}/\text{s}}{8.0\;\text{s}}\\
.\\
a=\dfrac{5.0\;i\;\text{m}/\text{s}+10.0\;j\;\text{m}/\text{s}}{8.0\;\text{s}}\\
.\\
a=\dfrac{(5.0\;i+10.0\;j)\;\text{m}/\text{s}}{8.0\;\text{s}}\\
.\\
a=(0.625\;i+1.25\;j)\;\text{m}/\text{s}^{2}\\ a = t V f − V i . a = 8.0 s ( 8.0 i + 10.0 j ) m / s − 3.0 i m / s . a = 8.0 s 8.0 i m / s + 10.0 j m / s − 3.0 i m / s . a = 8.0 s 5.0 i m / s + 10.0 j m / s . a = 8.0 s ( 5.0 i + 10.0 j ) m / s . a = ( 0.625 i + 1.25 j ) m / s 2
The force on the object is given by.
F = m a F=m\;a\\ F = m a
where.
m m m Is the mass.
a a a is the acceleration.
Evaluating numerically.
F = m a F = 4.0 Kg × ( 0.625 i + 1.25 j ) m / s 2 F = ( 2.5 i + 5 j ) N F=m\;a\\
F=4.0\;\text{Kg}\times (0.625\;i+1.25\;j)\;\text{m}/\text{s}^{2}\\
F=(2.5\;i+5\;j)\;\text{N} F = m a F = 4.0 Kg × ( 0.625 i + 1.25 j ) m / s 2 F = ( 2.5 i + 5 j ) N
Answer (a)
The force on the object is
The horizontal component. F x = 2.5 N \displaystyle \color{red}{\boxed{F_{x}=2.5\;\text{N}}} F x = 2.5 N
The vertical component. F y = 5 N \displaystyle \color{red}{\boxed{F_{y}=5\;\text{N}}} F y = 5 N
Part B
The magnitude of the force is given by.
F = F x 2 + F y 2 F=\sqrt{ F_{x}^{2}+F_{y}^{2}} F = F x 2 + F y 2
Evaluating numerically.
F = F x 2 + F y 2 F = ( 2.5 N ) 2 + ( 5 N ) 2 F = 31.25 N 2 F = 5.6 N F=\sqrt{ F_{x}^{2}+F_{y}^{2}}\\
F=\sqrt{ (2.5\;\text{N})^{2}+(5\;\text{N})^{2}}\\
F=\sqrt{ 31.25\;\text{N}^{2} }\\
F=5.6\;\text{N} F = F x 2 + F y 2 F = ( 2.5 N ) 2 + ( 5 N ) 2 F = 31.25 N 2 F = 5.6 N
Answer B
The magnitude of the force on the object is F = 5.6 N \displaystyle \color{red}{\boxed{F=5.6\;\text{N}}} F = 5.6 N
Comments
Wow amazing solution,
Leave a comment