Answer to Question #222233 in Classical Mechanics for tonny419

Question #222233

Two crossed belts on pulleys of diameters 3.6 m and 2.4 m connect two parallel shafts with centres 4.2 meters apart. The maximum tension in the belts is limited to 1200 N and friction between the belts and the pulley, μ = 0.26. The smaller pulley has a speed of 300 rev/min.

2.1. Find the power that can be transmitted. (8)

2.2. What would be transmitted if open belts were used. (8)


1
Expert's answer
2021-08-02T08:40:03-0400

d1=2.4m;r1=d12=1.2m;n1=300rpmd_1 = 2.4m;r_1=\frac{d_1}{2}=1.2m;n_1= 300rpm

d2=3.6m;r1=d22=1.8m;d_2= 3.6m;r_1=\frac{d_2}{2}=1.8m;

l=4.2;μ=0.26l= 4.2;\mu =0.26

T1=1200T_1= 1200

P=(T1T2)vP= (T_1-T_2)v

v=πd1n16037.7msv= \frac{\pi d_1n_1}{60}\approx37.7\frac{m}{s}

by Euler’s formula:\text{by Euler's formula:}

T1T2=eμθ\frac{T_1}{T_2}=e^{\mu\theta}

θpulley wrap angle in radians\theta - \text{pulley wrap angle in radians}

2.1 for crossed belts2.1 \text{ for crossed belts}

θ=2π2arccos(r1+r2l)=4.73\theta = 2\pi-2\arccos(\frac{r_1+r_2}{l})=4.73

T2=T1eμθ=1200e0.264.73=350.82T_2 = \frac{T_1}{e^{\mu \theta}}=\frac{1200}{e^{0.26 *4.73}}=350.82

P=(T1T2)v=(1200350.82)37.7=32014W=35kWP= (T_1-T_2)v=(1200-350.82)*37.7=32014W=35kW

2.2 for open belts2.2 \text{ for open belts}

θ=2π2arccos(r1r2l)=3.43\theta = 2\pi-2\arccos(\frac{r_1-r_2}{l})=3.43

T2=T1eμθ=1200e0.263.43492T_2' = \frac{T_1}{e^{\mu \theta}}=\frac{1200}{e^{0.26 *3.43}}\approx492

P=(T1T2)v=(1200492)37.7=26691W=26.7kWP'= (T_1-T'_2)v=(1200-492)*37.7=26691W=26.7kW


Answer: power that can be transmitted:\text{Answer: power that can be transmitted:}

2.1 P=35kW

2.2 P'=26.7kW



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment