E = E k + E p E = E_k+E_p E = E k + E p
E k = m v 2 2 E_k =\frac{mv^2}{2} E k = 2 m v 2
E p = k x 2 2 E_p =\frac{kx^2}{2} E p = 2 k x 2
where x offset from equilibrium point position \text{where x offset from equilibrium point position} where x offset from equilibrium point position
let A oscillation amplitude,then for x = A: \text{let A oscillation amplitude,then for x = A:} let A oscillation amplitude,then for x = A:
E = E k ′ + E p ′ E=E'_k+E'_p E = E k ′ + E p ′
E k ′ = 0 etc v = 0 E'_k= 0 \text{ etc }v= 0 E k ′ = 0 etc v = 0
E p = k A 2 2 E_p =\frac{kA^2}{2} E p = 2 k A 2
E = k A 2 2 E = \frac{kA^2}{2} E = 2 k A 2
if E p = E k : \text{if } E_p=E_k: if E p = E k :
E p + E k = E ; E_p+E_k= E; E p + E k = E ;
2 ∗ E p = k A 2 2 2*E_p=\frac{kA^2}{2} 2 ∗ E p = 2 k A 2
2 ∗ k x 1 2 2 = k A 2 2 2*\frac{kx_1^2}{2}=\frac{kA^2}{2} 2 ∗ 2 k x 1 2 = 2 k A 2
x 1 = A 2 2 = 0.71 ∗ A x_1= \sqrt{\frac{A^2}{2}}=0.71*A x 1 = 2 A 2 = 0.71 ∗ A
Answer: kinetic and potential energies are equal when shifted \text{Answer: kinetic and potential energies are equal when shifted } Answer: kinetic and potential energies are equal when shifted
by 0.71*A from the equilibrium point; \text {by 0.71*A from the equilibrium point;} by 0.71*A from the equilibrium point;
A this is the Simple Harmonic Motion amplitude \text{ A this is the Simple Harmonic Motion amplitude} A this is the Simple Harmonic Motion amplitude
Comments