What is displacement of an object in Simple Harmonic Motion when kinetic and potential energy are equal? please explain
"E = E_k+E_p"
"E_k =\\frac{mv^2}{2}"
"E_p =\\frac{kx^2}{2}"
"\\text{where x offset from equilibrium point position}"
"\\text{let A oscillation amplitude,then for x = A:}"
"E=E'_k+E'_p"
"E'_k= 0 \\text{ etc }v= 0"
"E_p =\\frac{kA^2}{2}"
"E = \\frac{kA^2}{2}"
"\\text{if } E_p=E_k:"
"E_p+E_k= E;"
"2*E_p=\\frac{kA^2}{2}"
"2*\\frac{kx_1^2}{2}=\\frac{kA^2}{2}"
"x_1= \\sqrt{\\frac{A^2}{2}}=0.71*A"
"\\text{Answer: kinetic and potential energies are equal when shifted }"
"\\text {by 0.71*A from the equilibrium point;}"
"\\text{ A this is the Simple Harmonic Motion amplitude}"
Comments
Leave a comment