Answer to Question #177178 in Classical Mechanics for Joseph Se

Question #177178

The final answer should be in the format of "tolerance of ± in the third significant digit."


1.The piston of the hydraulic cylinder gives pin A a constant velocity v = 3.6 ft/sec in the direction shown for an interval of its motion. For the instant when θ = 67°, determine r˙, r¨, θ˙, and θ¨ where r = line OA. The distance of the line A to line B is 6.8”.

r˙ = _ ft/sec

r¨ = _ ft/sec2

θ˙ = _ rad/sec

θ¨ = _ rad/sec2




1
Expert's answer
2021-04-05T11:12:36-0400

r˙=vr=vcosθ=14.0663 fts,\dot{r}=v_r=v cos \theta=14.0663~\frac {ft}{s},

vθ=vsinθ=3.3138 fts,v_{\theta}=-v sin \theta=-3.3138~\frac {ft}{s},

vθ=rθ˙    θ˙=vθr=0.4873 rads,v_{\theta}=r\dot{\theta}\implies \dot{\theta}=\frac{v_{\theta}}{r}=-0.4873~\frac {rad}{s},

ar=acosθ=0.3907a fts2,a_r=acos \theta=0.3907a~\frac{ft}{s^2},

aθ=asinθ=0.9205 fts2,a_{\theta}=-asin \theta=-0.9205~\frac{ft}{s^2},

ar=r¨rθ˙2,    r¨=ar+rθ˙2=0.3907a+1.6147 fts2,a_r=\ddot{r}-r\dot{\theta}^2,\implies \ddot{r}=a_r+r\dot{\theta}^2=0.3907a+1.6147~\frac{ft}{s^2},

aθ=rθ¨+2r˙θ˙    θ¨=aθ2r˙θ˙r=1.8807 rads2.a_{\theta}=r\ddot{\theta}+2\dot{r}\dot{\theta}\implies \ddot{\theta}=\frac{a_{\theta}-2\dot{r}\dot{\theta}}{r}=1.8807~\frac{rad}{s^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment