Question #174450

A simple pendulum is hanging from a support and is at rest as seen from the lab where the latitude is 600. Assume the earth to be a uniform sphere. The angle between the string and the true vertical at that place is

(a) less than 20


(b) between 20 and 40


(c) between 40 and 60


(d) more than 60?


1
Expert's answer
2021-03-29T09:04:23-0400

T=mω2l=mω2Rcosφ,T=m\omega^2 l=m \omega^2Rcos \varphi,

P=mg=m(GMR2ω2R),P=mg=m(\frac{GM}{R^2}-\omega^2 R),

F=GmMR2,F=\frac{GmM}{R^2},

φ=60°,\varphi=60°,

R=6.37106 m,R=6.37\cdot 10^6~m,

ω=2πt=2π86164,\omega=\frac{2\pi}{t}=\frac{2\pi}{86164},

T2=P2+F22PTcosβ,    T^2=P^2+F^2-2PTcos \beta,\implies

cosβ=P2+F2T22PF=(GMR2ω2R)2+(GMR2)2(ω2Rcosφ)22(GMR2ω2R)GMR21,cos\beta=\frac{P^2+F^2-T^2}{2PF}=\frac{(\frac{GM}{R^2}-\omega^2 R)^2+(\frac{GM}{R^2})^2-(\omega^2 R cos\varphi)^2}{2(\frac{GM}{R^2}-\omega^2 R)\frac{GM}{R^2}}\approx 1,

β0°<2°,\beta\approx 0°<2°,

answer (a).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS