Given,
θ = \theta= θ = Independent scalar variable
r ( θ ) = r(\theta)= r ( θ ) = Position vector
t ^ = \hat{t}= t ^ = unit tangent vector
n ^ = \hat{n}= n ^ = unit normal vector
r ( θ ) = r cos θ i ^ + r sin θ j ^ r(\theta)=r\cos\theta \hat{i}+r\sin\theta\hat{j} r ( θ ) = r cos θ i ^ + r sin θ j ^
n ^ = r ( θ ) → ∣ r ( θ ) ∣ = r cos θ i ^ + r sin θ j ^ r \hat{n}=\frac{\overrightarrow{r(\theta)}}{|r(\theta)|}=\frac{r\cos\theta \hat{i}+r\sin\theta\hat{j}}{r} n ^ = ∣ r ( θ ) ∣ r ( θ ) = r r c o s θ i ^ + r s i n θ j ^
= cos θ i ^ + sin θ j ^ =\cos\theta \hat{i}+\sin\theta\hat{j} = cos θ i ^ + sin θ j ^
unit tangent vector( t ^ ) = r ′ ( θ ) ∣ r ′ ∣ (\hat{t})=\frac{r'(\theta)}{|r'|} ( t ^ ) = ∣ r ′ ∣ r ′ ( θ )
t ^ = − r sin θ i ^ + r cos θ j ^ r = − sin θ i ^ + r cos θ j ^ \hat{t}=\frac{-r\sin\theta\hat{i}+r\cos\theta\hat{j}}{r}=-\sin\theta \hat{i}+r\cos\theta\hat{j} t ^ = r − r s i n θ i ^ + r c o s θ j ^ = − sin θ i ^ + r cos θ j ^
Now,
n ^ . t ^ = ( cos θ i ^ + sin θ j ^ ) ( − sin θ i ^ + r cos θ j ^ ) \hat{n}.\hat{t}=(\cos\theta \hat{i}+\sin\theta\hat{j})(-\sin\theta \hat{i}+r\cos\theta\hat{j}) n ^ . t ^ = ( cos θ i ^ + sin θ j ^ ) ( − sin θ i ^ + r cos θ j ^ )
= − cos θ . sin θ + sin θ . cos θ =-\cos\theta . \sin\theta+\sin\theta.\cos\theta = − cos θ . sin θ + sin θ . cos θ
= 0 =0 = 0
Hence, it is prove that n ^ \hat{n} n ^ is perpendicular to t ^ \hat{t} t ^ .
Comments