Question #171466

A plane flies 20 km in a direction 60° north of east, then 30 km straight east, then 10 km straight north. How far and in what direction is the plane from the starting point? Use i and j unit vectors.


1
Expert's answer
2021-03-16T11:38:08-0400

Let's find xx- and yy-components of the resultant displacement of the plane:


dx=20 kmcos60+30 kmcos0+10 kmcos90=40 km,d_x=20\ km\cdot cos60^{\circ}+30\ km\cdot cos0^{\circ}+10\ km\cdot cos90^{\circ}=40\ km,dy=20 kmsin60+30 kmsin0+10 kmsin90=27.32 km.d_y=20\ km\cdot sin60^{\circ}+30\ km\cdot sin0^{\circ}+10\ km\cdot sin90^{\circ}=27.32\ km.

We can write the resultant displacement of the plane in unit vector notation as follows:


d=(40 km)i+(27.32 km)j.d=(40\ km)i+(27.32\ km)j.

We can find the magnitude of the resultant displacement from the Pythagorean theorem:


d=dx2+dy2=(40 km)2+(27.32 km)2=48.44 km.d=\sqrt{d_x^2+d_y^2}=\sqrt{(40\ km)^2+(27.32\ km)^2}=48.44\ km.

We can find the direction of the plane from the starting point from the geometry:


θ=cos1(dxd),\theta=cos^{-1}(\dfrac{d_x}{d}),θ=cos1(40 km48.44 km)=34.3 N of E.\theta=cos^{-1}(\dfrac{40\ km}{48.44\ km})=34.3^{\circ}\ N\ of\ E.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS